Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for improving battery performance and safety in applications such as consumer electronics and electric vehicles. While the prediction of RUL for these batteries is a well-established field, the current research refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The model’s name reflects its precision (“AccuCell”) and predictive strength (“Prodigy”). The proposed methodology involves preparing a dataset of battery operational features, split using an 80–20 ratio for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared value of 0.9849. These results highlight its robustness and potential for advancing battery health management.
metadata
Iftikhar, Mahrukh; Shoaib, Muhammad; Altaf, Ayesha; Iqbal, Faiza; Gracia Villar, Santos; Dzul López, Luis Alonso y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, SIN ESPECIFICAR
(2024)
A deep learning approach to optimize remaining useful life prediction for Li-ion batteries.
Scientific Reports, 14 (1).
ISSN 2045-2322