Efficacy of a vaginal suppository formulation prepared with Acacia arabica (Lam.) Willd. gum and Cinnamomum camphora (L.) J. Presl. in heavy menstrual bleeding analyzed using a machine learning technique
Artículo
Materias > Biomedicina
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Objective: This study aims to determine the efficacy of the Acacia arabica (Lam.) Willd. and Cinnamomum camphora (L.) J. Presl. vaginal suppository in addressing heavy menstrual bleeding (HMB) and their impact on participants' health-related quality of life (HRQoL) analyzed using machine learning algorithms.
Method: A total of 62 participants were enrolled in a double-dummy, single-center study. They were randomly assigned to either the suppository group (SG), receiving a formulation prepared with Acacia arabica gum (Gond Babul) and camphor from Cinnamomum camphora (Kafoor) through two vaginal suppositories (each weighing 3,500 mg) for 7 days at bedtime along with oral placebo capsules, or the tranexamic group (TG), receiving oral tranexamic acid (500 mg) twice a day for 5 days and two placebo vaginal suppositories during menstruation at bedtime for three consecutive menstrual cycles. The primary outcome was the pictorial blood loss assessment chart (PBLAC) for HMB, and secondary outcomes included hemoglobin level and SF-36 HRQoL questionnaire scores. Additionally, machine learning algorithms such as k-nearest neighbor (KNN), AdaBoost (AB), naive Bayes (NB), and random forest (RF) classifiers were employed for analysis.
Results: In the SG and TG, the mean PBLAC score decreased from 635.322 ± 504.23 to 67.70 ± 22.37 and 512.93 ± 283.57 to 97.96 ± 39.25, respectively, at post-intervention (TF3), demonstrating a statistically significant difference (p < 0.001). A higher percentage of participants in the SG achieved normal menstrual blood loss compared to the TG (93.5% vs 74.2%). The SG showed a considerable improvement in total SF-36 scores (73.56%) compared to the TG (65.65%), with a statistically significant difference (p < 0.001). Additionally, no serious adverse events were reported in either group. Notably, machine learning algorithms, particularly AB and KNN, demonstrated the highest accuracy within cross-validation models for both primary and secondary outcomes.
Conclusion: The A. arabica and C. camphora vaginal suppository is effective, cost-effective, and safe in controlling HMB. This botanical vaginal suppository provides a novel and innovative alternative to traditional interventions, demonstrating promise as an effective management approach for HMB.
metadata
Fazmiya, Mohamed Joonus Aynul; Sultana, Arshiya; Heyat, Md Belal Bin; Parveen, Saba; Rahman, Khaleequr; Akhtar, Faijan; Khan, Azmat Ali; Alanazi, Amer M.; Ahmed, Zaheer; Díez, Isabel de la Torre; Brito Ballester, Julién y Saripalli, Tirumala Santhosh Kumar
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, julien.brito@uneatlantico.es, SIN ESPECIFICAR
(2024)
Efficacy of a vaginal suppository formulation prepared with Acacia arabica (Lam.) Willd. gum and Cinnamomum camphora (L.) J. Presl. in heavy menstrual bleeding analyzed using a machine learning technique.
Frontiers in Pharmacology, 15.
ISSN 1663-9812
|
Texto
fphar-15-1331622 (1).pdf Available under License Creative Commons Attribution. Descargar (3MB) | Vista Previa |
Resumen
Objective: This study aims to determine the efficacy of the Acacia arabica (Lam.) Willd. and Cinnamomum camphora (L.) J. Presl. vaginal suppository in addressing heavy menstrual bleeding (HMB) and their impact on participants' health-related quality of life (HRQoL) analyzed using machine learning algorithms. Method: A total of 62 participants were enrolled in a double-dummy, single-center study. They were randomly assigned to either the suppository group (SG), receiving a formulation prepared with Acacia arabica gum (Gond Babul) and camphor from Cinnamomum camphora (Kafoor) through two vaginal suppositories (each weighing 3,500 mg) for 7 days at bedtime along with oral placebo capsules, or the tranexamic group (TG), receiving oral tranexamic acid (500 mg) twice a day for 5 days and two placebo vaginal suppositories during menstruation at bedtime for three consecutive menstrual cycles. The primary outcome was the pictorial blood loss assessment chart (PBLAC) for HMB, and secondary outcomes included hemoglobin level and SF-36 HRQoL questionnaire scores. Additionally, machine learning algorithms such as k-nearest neighbor (KNN), AdaBoost (AB), naive Bayes (NB), and random forest (RF) classifiers were employed for analysis. Results: In the SG and TG, the mean PBLAC score decreased from 635.322 ± 504.23 to 67.70 ± 22.37 and 512.93 ± 283.57 to 97.96 ± 39.25, respectively, at post-intervention (TF3), demonstrating a statistically significant difference (p < 0.001). A higher percentage of participants in the SG achieved normal menstrual blood loss compared to the TG (93.5% vs 74.2%). The SG showed a considerable improvement in total SF-36 scores (73.56%) compared to the TG (65.65%), with a statistically significant difference (p < 0.001). Additionally, no serious adverse events were reported in either group. Notably, machine learning algorithms, particularly AB and KNN, demonstrated the highest accuracy within cross-validation models for both primary and secondary outcomes. Conclusion: The A. arabica and C. camphora vaginal suppository is effective, cost-effective, and safe in controlling HMB. This botanical vaginal suppository provides a novel and innovative alternative to traditional interventions, demonstrating promise as an effective management approach for HMB.
| Tipo de Documento: | Artículo |
|---|---|
| Palabras Clave: | female disorder, heavy menstrual bleeding, Unani system of medicine, drug design, artificial intelligence with botanical drug, medical intelligence, Acacia arabica gum, Cinnamomum camphora |
| Clasificación temática: | Materias > Biomedicina |
| Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica |
| Depositado: | 08 Mar 2024 23:30 |
| Ultima Modificación: | 08 Mar 2024 23:30 |
| URI: | https://repositorio.uniromana.edu.do/id/eprint/11175 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/17849/1.hassmallThumbnailVersion/1-s2.0-S2590005625001043-main.pdf" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a href="/17857/1/excli2025-8779.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17857/1.hassmallThumbnailVersion/excli2025-8779.pdf" border="0"/></a>
en
open
Polyphenols are naturally occurring compounds that can be found in plant-based foods, including fruits, vegetables, nuts, seeds, herbs, spices, and beverages, the use of which has been linked to enhanced brain health and cognitive function. These natural molecules are broadly classified into two main groups: flavonoids and non-flavonoid polyphenols, the latter including phenolic acids, stilbenes, and tannins. Flavonoids are primarily known for their potent antioxidant properties, which help neutralize harmful reactive oxygen species (ROS) in the brain, thereby reducing oxidative stress, a key contributor to neurodegenerative diseases. In addition to their antioxidant effects, flavonoids have been shown to modulate inflammation, enhance neuronal survival, and support neurogenesis, all of which are critical for maintaining cognitive function. Phenolic acids possess strong antioxidant properties and are believed to protect brain cells from oxidative damage. Neuroprotective effects of these molecules can also depend on their ability to modulate signaling pathways associated with inflammation and neuronal apoptosis. Among polyphenols, hydroxycinnamic acids such as caffeic acid have been shown to enhance blood-brain barrier permeability, which may increase the delivery of other protective compounds to the brain. Another compound of interest is represented by resveratrol, a stilbene extensively studied for its potential neuroprotective properties related to its ability to activate the sirtuin pathway, a molecular signaling pathway involved in cellular stress response and aging. Lignans, on the other hand, have shown promise in reducing neuroinflammation and oxidative stress, which could help slow the progression of neurodegenerative diseases and cognitive decline. Polyphenols belonging to different subclasses, such as flavonoids, phenolic acids, stilbenes, and lignans, exert neuroprotective effects by regulating microglial activation, suppressing pro-inflammatory cytokines, and mitigating oxidative stress. These compounds act through multiple signaling pathways, including NF-κB, MAPK, and Nrf2, and they may also influence genetic regulation of inflammation and immune responses at brain level. Despite their potential for brain health and cognitive function, polyphenols are often characterized by low bioavailability, something that deserves attention when considering their therapeutic potential. Future translational studies are needed to better understand the right dosage, the overall diet, the correct target population, as well as ideal formulations allowing to overcome bioavailability limitations.
Justyna Godos mail , Giuseppe Carota mail , Giuseppe Caruso mail , Agnieszka Micek mail , Evelyn Frias-Toral mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, José L. Quiles mail jose.quiles@uneatlantico.es,
Godos
<a href="/17859/1/s41598-025-18105-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17859/1.hassmallThumbnailVersion/s41598-025-18105-8.pdf" border="0"/></a>
en
open
Enhanced FPGA-based smart power grid simulation using Heun and Piecewise analytic method
The increasing complexity of modern power systems requires engineers to design, build, and test equipment with a high degree of accuracy. The demand for precise equipment design, testing, and evaluation has reached extraordinary levels within modern power systems. To meet this challenge, engineers rely heavily on real-time simulators, which are essential tools for assessing power network dynamics. This study introduces a novel approach, an adaptable and cost-effective simulator, poised to revolutionize traditional hardware-in-the-loop (HIL) systems. Leveraging field-programmable gate arrays (FPGAs) and a comprehensive implementation of Heun and Piecewise analytic methods (PAM), provided simulator offers unparalleled capabilities for embedded real-time simulation of smart grids, ensuring swift and accurate measurements. Augmented by Python-based process simulation and integrated with industry-standard tools like Modelica and MATLAB, the proposed system promises versatility and efficiency. Through comprehensive testing, including rigorous evaluations of excitation system responses to diverse scenarios such as voltage set-point variations, automatic voltage regulator step responses, and fault conditions, we demonstrate the simulator’s robustness and precision. Experimental findings underscore its potential as an effective alternative to conventional HIL systems, marking a significant advancement in smart grid simulation technology.
Urfa Gul mail , Hafiz Muhammad Raza Ur Rehman mail , Muhammad Junaid Gul mail , Gerardo Méndez Mezquita mail , Alina Eugenia Pascual Barrera mail alina.pascual@unini.edu.mx, Imran Ashraf mail ,
Gul
<a class="ep_document_link" href="/17844/1/frai-1-1572645.pdf"><img class="ep_doc_icon" alt="[img]" src="/17844/1.hassmallThumbnailVersion/frai-1-1572645.pdf" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
<a class="ep_document_link" href="/17825/1/foods-14-02648-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/17825/1.hassmallThumbnailVersion/foods-14-02648-v2.pdf" border="0"/></a>
en
open
Background: Western dietary patterns worldwide are increasingly dominated by energy-dense, nutrient-deficient industrial foods, often identified as ultra-processed foods (UPFs). Such products may have detrimental health implications, particularly if nutritionally inadequate. This study aimed to examine the intake of unhealthy UPFs among children and adolescents from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) involved in the DELICIOUS project and to assess the association with dietary quality indicators. Methods: A survey was conducted with a sample of 2011 parents of children and adolescents aged 6 to 17 years to evaluate their dietary habits. Diet quality was assessed using the Youth Healthy Eating Index (Y-HEI), the KIDMED index to determine adherence to the Mediterranean diet, and compliance with national dietary guidelines. Results: Increased UPF consumption was not inherently associated with healthy or unhealthy specific food groups, although children and adolescents who consumed UPF daily were less likely to exhibit high overall diet quality and adherence to the Mediterranean diet. In all five countries, greater UPF intake was associated with poorer compliance with dietary recommendations concerning fats, sweets, meat, and legumes. Conclusions: Increased UPF consumption among Mediterranean children and adolescents is associated with an unhealthy dietary pattern, possibly marked by a high intake of fats, sweets, and meat, and a low consumption of legumes.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Achraf Ammar mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Nunzia Decembrino mail , Alessandro Scuderi mail , Alice Leonardi mail , Lorenzo Monasta mail , Fernando Maniega Legarda mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
