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Abstract: Physiotherapy plays a crucial role in the rehabilitation of damaged or defective organs due
to injuries or illnesses, often requiring long-term supervision by a physiotherapist in clinical settings
or at home. AI-based support systems have been developed to enhance the precision and effectiveness
of physiotherapy, particularly during the COVID-19 pandemic. These systems, which include game-
based or tele-rehabilitation monitoring using camera-based optical systems like Vicon and Microsoft
Kinect, face challenges such as privacy concerns, occlusion, and sensitivity to environmental light.
Non-optical sensor alternatives, such as Inertial Movement Units (IMUs), Wi-Fi, ultrasound sensors,
and ultrawide band (UWB) radar, have emerged to address these issues. Although IMUs are portable
and cost-effective, they suffer from disadvantages like drift over time, limited range, and susceptibility
to magnetic interference. In this study, a single UWB radar was utilized to recognize five therapeutic
exercises related to the upper limb, performed by 34 male volunteers in a real environment. A novel
feature fusion approach was developed to extract distinguishing features for these exercises. Various
machine learning methods were applied, with the EnsembleRRGraBoost ensemble method achieving
the highest recognition accuracy of 99.45%. The performance of the EnsembleRRGraBoost model was
further validated using five-fold cross-validation, maintaining its high accuracy.

Keywords: physiotherapy; ultrawide band (UWB) radar; therapeutic exercise; machine learning;
opto-electronic sensors; ensemble method

1. Introduction

Physiotherapy is the component of modern medical healthcare that provides a mecha-
nism for the development, maintenance, and recovery of human body movement and its
functionalities after illnesses or injuries. There are many types of therapeutic exercises that
help in curing various illnesses in order to manage pain or prevent diseases. Physiother-
apistss and medical experts reccomend therapeutic exercises to subjects with movement
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impairment and difficulties performing routine tasks due to illness or injury [1]. Stroke,
brain injuries, sports injuries, motor disabilities, Parkinson disease, and post-accident
injuries need rehabilitation therapeutic exercises. Patients are reccomended therapeutic
exercises according to their pace and tolerance levels. The therapeutic training exercises
that are adequate for one patient may not be effective for other patients, because they
depend on the patient’s condition and on the severity of injuries or illness. There are the
major therapeutic exercises categories: range of motion, muscle strengthening exercises,
balance exercises, flexibility exercises, and post-surgery exercises [1]. Thus, there is an acute
need for physiotherapists and medical experts who can provide rehabilitation facilities
to patients affected by certain illnesses or injuries [2]. Physiotherapy rehabilitation is a
prolonged process and requires intensive care from a physiotherapist during the treatment
session. AI-based systems are being developed to facilitate physiotherapists in the patient
as they perform therapeutic exercises, either at therapeutic centers or at home. Several
technologies, including optical, inertial, and radiofrequency (RF)-based systems, have been
launched in both public and commercial domains for the purpose of tracking and monitor-
ing body motions, postures, and activities. For motion monitoring, camera-based optical
systems, like Microsoft Kinect (ToF), are the gold standard. But, they are costly, have pri-
vacy concerns, are prone to occlusion, and are preferred for use in lab-based environments.
Inertial sensors are comparatively cheap and commercially available, but have calibration
and drift problems [3]. UWB technology is an RF-based, non-optoelectronic sensing tech-
nology that is effective for communication applications like activity monitoring, tracking,
and human localization [4,5]. Attractive advantages of UWB include interoperability with
other technologies, compact antenna design, robustness against multipath interference, low
cost and power consumption, and high temporal resolution [6,7]. Optoelectronic sensors
have been widely used for therapeutic exercises classification, human activity detection,
motion capture, and pose estimation [8–10]. These sensors face significant challenges,
including privacy concerns, susceptibility to occlusion, and sensitivity to environmental
light [3]. Commercial inertial measurements units have also been used for activity, motion,
and pose detection. But, inertial sensors interfere with drift.

In contrast, UWB radar, a non-contact ambient sensor, can be used as an alternative to
overcome the issues in optoelectrical sensors. With the advancement of machine learning
algorithms, it is possible now to make correct predictions using sensor data, particularly in
classification problems.Evidently, UWB-radar-based systems have been widely developed
for medical diagnosis support, particularly for vital sign detection [11] and human activity
detection [12]. For the detection of sports activities and physical exercise recognition,
UWB radars have been used in both laboratory environments and in on-body placements,
respectively [13,14]. In light of this research, it is feasible to extend our work to the
recognition of therapeutic exercises. To the best of our knowledge, no systemcurrently
exists that recognizes therapeutic exercises using a single UWB radar in real environments
with high accuracy

1.1. Significance of Research

This research work proposes a noncontact approach to address the challenges of
classifying therapeutic exercises effectively using a single UWB radar in a real environment.
UWB radar technology is extensively used in many domains, including in medicine for
vital sign monitoring and human activity recognition, but its potential for therapeutic
exercise recognition is mostly undiscovered. This research addresses a significant gap in
the literature by aiming to classify therapeutic workouts in natural settings using a single
UWB radar. This has the potential to completely transform rehabilitation procedures by
offering a low-cost, non-intrusive monitoring system. The UWB-based system can be used
in clinical and domestic environments. Additionally, using UWB radar data, the research
attempts to determine the best feature extraction methods and machine learning models by
assessing the practicability and effectiveness of the data obtained from therapeutic exercises
using a UWB radar.
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1.2. Major Contributions

UWB Radar is widely used in many fields of life, particularly in the medical field
for the detection of vital signs. Its applications can still be explored in human activity de-
tection, human pose estimation, human physical exercises classification, and sports activity
recognition. In these studies, experiments were performed in a controlled environment by
implementing multiple UWB radars or in combination with optical and non-optical senses.
But, the real challenge lies in developing a system that recognizes therapeutic exercises in a
real environment using a single UWB radar. In this study, it we attempted to achieve the
above-mentioned challenges and contribute the following:

1. This study was conducted to evaluate the feasibility and efficiency of UWB radar
data for classifying therapeutic exercises. In this context, data were collected from the
upper extremities of 34 healthy volunteers, under the guidelines of a physiotherapist.

2. Signal processing techniques were used to pre-process and improve the raw UWB
data. Afterward, feature extraction methods were used to extract the relevant spectral
features. Multiple machine learning (ML) models, such as ridge regression, random
forest (RF), gradient boosting machines (GBM), AdaBoost, Gaussian Naïve Bayes
(GNB), and an ensemble technique, were trained for recognition.

3. The study presents a novel approach for features fusion, which involves mixing tempo-
ral and class prediction probability features retrieved from the temporal and spectral
features dataset. The integration of these characteristics enhanced the performance of
the machine learning models.

4. The effectiveness of the suggested method was evaluated using metrics such as
accuracy, precision, recall, and the F1 score. K-fold cross-validation was performed to
assess the reliability of the technique.

The subsequent sections of the article are organized in the following manner. Section 2,
provides a thorough examination of the relevant literature. Section 3 provides a detailed
explanation of the methods used in this work, while Section 4, contains the experimental
results. Finally, Section 5 provides the conclusion.

2. Literature Review

Camera-based optical systems, such as Vicon and Microsoft Kinect, are considered
the gold standard. However, they can be challenging to use due to privacy concerns [3].
In contrast, a non-optical and non-contact ambient sensor that has no such issues is the
XeThru UWB radar [4,15]. This UWB radar can be used for the recognition of therapeutic
exercises while also preserving the privacy of subjects. For example, [14] extracted on-body
channel information using UWB radar and performed classification of physical exercises.
UWB radar has been used in many fields, such as X-Ray vision with material-penetrating
radars [16], remote medical patient monitoring [15], radar safety systems for vehicles [17],
imaging radar for the detection of concealed weapons [18], sense-through-the wall radar
systems, and long-range UWB radar imaging [19]. Many researchers have used it to
monitor human behavior during specific situations or events and have developed CASAS
to analyze these behaviors. Ref. [5] presented a novel sensing technique for non-wearable
UWB radar sensor-based human activity detection. The study was performed with a
UWB radar placed on the robot mobile and recognized five activities: lying, sitting with
the legs on a bed, sitting on a bed with legs on the floor, standing position, and during
walking in an apartment (control environment). Principle Component Analysis (PCA) and
Latent Discriminate Analysis (LDA) were used for feature extraction from the raw data
of the UWB radar. Finally, long short-term memory (LSTM), a deep learning approach,
was implemented to classify the above-mentioned five exercises with an accuracy 99.6%.
A thorough analysis of UWB radar on-body channel linkages throughout a range of physical
activities, with an emphasis on upper and lower limb range-of-motion movements, was
presented by [4]. In this study, a UWB radar was used to demonstrate how types of activities,
transmitter–receiver distance, body obstacles, and antenna location and orientation affected
channel variances. Kurtosis was found to be useful as a differentiating metric with a
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scoring accuracy of 98% when recognizing activities of daily living using a UWB radar.
Recognizing routine activities is a major goal of smart homes. Ref. [20] offered a simplified
method to recognize activities using deep learning models, three UWB radars, and a voting
mechanism. The experiment was conducted in a LAIRA’S apartment to capture 15 distinct
activities and it achieved a classification accuracy of 90%. For the purposes of elderly care,
a study was performed by [12], in which a non-intrusive UWB radar approach was used in
an apartment that was being developed as a smart home monitoring system. Time domain
features of skewness and kurtosis were extracted from the raw data of the UWB radar. It
used a k-nearest neighbor machine learning classifier to recognize four human activities:
walking from the entrance toward the radar and back; walking from the entrance to a chair,
sitting for a while, then standing up and returning to the entrance; and walking to the
middle of the room and falling down. This study achieved an accuracy of 99%. Ref. [21]
investigated the viability of identifying Activities of Daily Living (ADLs) in smart homes
(LAIRA’S environment) using an UWB radar usinfg a contactless approach. A dataset of
15 distinct ADLs, sleeping, drinking, putting on a coat, preparing pasta, cleaning, preparing
tea, doing the dishes, brushing teeth, washing hands, reading a book, L-walk, K-Eat, N-Take
meditation, M-put on shoes, and O-Use computer was captured.Time domain features
such as minimum, maximum, mean, standard deviation, variance, skewness, kurtosis
wave length, mean absolute deviation, energy, crossing correlation, mean crossing rate,
and frequency domain features Discrete Wavelet Transform (DWT) were prepared from the
raw radar data. Finally, three machine learning models—Classification & Regression Tree
(CART), K-Nearest Neighbor and Random Forest—were used for classification purposes
and the Random Forest classifier was found to be the best with an 80% accuracy, 79%
F1-Score, and 77% Kappa.

Human motion is another kinect behavior that is required to be recognized in many
real-life AI applications. UWB radar is also used for the assessment of human motion
recognition. Ref. [22] conducted a study to recognize two categories of motions, in situ
motion and not in situ motion, using a UWB radar in a laboratory environment. Empirical
and PCA-based features were retrieved from the collected raw radar data. K-nearest
neighbor and Bagged Tree classifiers were used for the purpose of recognizing motions with
94.4% accuracy for the in situ and 95.3% for the not in situ motions. A Multi-Classification
algorithm was developed by [23], a UWB radar was implemented to recognize 12 motions:
bowing, jumping upward, falling vertically, sitting down, turning sideways, standing still,
crawing, jogging, falling forward, jumping forward, walking, and walking with stick. Data
sampling was performed in an apartment. Power Spectrum and Doppler shift features were
used to recognize the above-mentioned motions. The classification was performed uisng
two machine learning classifiers—K-nearest Neighbors (KNN) and Google LeNet—with
five-fold cross validation. This study found KNN to be the best classifier with an accuracy of
98%. Ref. [24] used a contactless approach with a UWB radar for recognizing five motions:
straightening the upper body, bending over, sitting down and standing up, turning the
upper body in one direction, and stretching the arm up and down. The features engineering
technique was used to extract the enveloped frameset from the raw radar data, then it
added the raw radar data and converted these findings into (red, green, and blue) RGB
images. Resnet-18, Resnet-101, and inspection-Resnet-v2 were trained and achieved 99%,
99.20%, and 96.40% accuracy, respectively. Human motion detection using a UWB radar
through the wall was conducted by [25]. The purpose of the study was to classify motions
such as walking, standing still, and empty spaces. It proposed UWB radar signals could be
used in grids and that grid information could be converted into features. Then, a Random
Multimodal Deep Learning framework, optimized by the Spotted Grey Wolf Optimizer
(SGWO), was implemented to identify the above-mentioned human motions with 95%
accuracy, 0.20 mean square error (MSE);], a highest True Negation Rate (TNR) of 0.95, and
a highest True Positive Rate (TPR) of 0.95 being recorded.

UWB radar applications can be used for the detection of human poses. Ref. [26]
conducted a study to recognize 10 hand gestures by placing two UWB radars—one on
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the right hand and other on left hand. The experiments were executed in an apartment.
Impedance variation was extracted as a feature and was further converted into grayscale
spectrogram images. The transfer learning technique was practiced using two pre-trained
models—Alex-Net and VGGA-16. Later, it was found that the best classifier had an accuracy
94.6%. Ref. [27] performed through-wall human posture classification using a Stepped
frequency continuous wave (SFCW) radar, a form of UWB radar.In this study, three human
poses, empty, standing, and sitting, were included and two apartments were used. Raw
radar data were converted into Inverse Fast Fourier Transform (IFFT) as the features.
Convolutional Neural Networks (CNNs) used for the recognition of human poses and
results revealed 98.56% accuracy. Fourteen hand gestures were also classified by [28] using
deep learning methods. In this study, variations in hand movements at different distances
and movements were used as the features. This study was conducted in an apartment.
For the recognition of hand gestures, three deep neural network models, 3D CNN, 2D
CNN and LSTM, were trained. LSTM was found to be the best with a 96% accuracy score.
A recent study was presented [29], in which the 3D-TransPOSE model was used with UWB
radar signals for the prediction of 3D human keypoints.

A UWB radar was used in the body-contact approach used for the recognition of
physical exercises by Ref. [14]. They presented an approach that used four UWB radars
to capture the data for 11 upper limb exercises. Physical exercises were performed in an
apartment. The 8-by-8 MIMO antenna array of the UWB radar system was operated at a
low frequency range. For classification purposes, the statistical kurtosis parameter of line
of sight (LOS) and nonline of sight (NLOS) was implemented and it archived a precision
greater than 98. 0%. UWB radars were used for the recognition of sports activity along with
a combination of inertial sensors in a laboratory environment. Four sports activities—break,
pull-up, squats, and dips—were included. The data from three UWB radars and IMU were
used as the features. The CNN model was used to recognize the sports activities and it
finally achieved an accuracy of 97.5%.

From the literature above and the comparative report on UWB radar for detecting
kinect behavior (activity, motion, pose, & exercise), it is evident that UWB radars has been
extensively employed in assessment of human activities, motions, poses, physical exercises,
and sports activities. Consequently, there is potential for its utilization in the recognition
of therapeutic exercises. However, the majority of studies involved multiple UWB radars,
and experiments were typically conducted in a controlled environment, such as a LAIRA
apartment. The challenge lies in using a contactless approach with a single UWB radar
to accurately classify the therapeutic exercises in a real environment. This study aims to
address this challenge by exploring appropriate solutions. There is also a need to find the
best feature engineering approach, such as the signal-to-noise ratio (SNR) inherent in the
UWB radar data.In addition, determining the most suitable machine learning classifier for
the identification of therapeutic exercises is imperative for the success of this endeavor.

3. Materials and Methods

This section includes various essential elements that seek to clarify the process of
obtaining, preprocessing, and engineering features from the data. The “Proposed Method-
ology” Section 3.1 provides an outline of the comprehensive framework that directs our
approach towards the analysis of therapeutic exercise data. Subsequently, Section 3.2 in
“Data Collection” provides detailed information on the precise methods used to obtain and
carefully choose the data for analysis. Section 3.3, titled “Signal Processing and Feature
Extraction” explains the methods used to prepare the raw data and extract important
features that are essential for further analysis. Section 3.4 introduces a novel methodology
that aims to improve the effectiveness of machine learning models by combining temporal
features and class prediction probability features collected from the temporal and spectral
feature dataset.
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3.1. Proposed Methodology

In this section, a novel research methodology is presented to classify the therapeutic
exercises. The first phase started by capturing the UWB-radar-based sensor data while the
subjects were performing the exercises, as shown in Figure 1. The second step involved
applying advanced signal processing techniques to the radar-based dataset to eliminate
noise and ensure the integrity of the acquired data. In the third step, an innovative method
of feature engineering that integrated temporal features and class prediction probability
features was applied. This resulted in a comprehensive feature set that successfully repre-
sented the required characteristics of the signal. In the proceeding phase, 70% of the dataset
was set aside for training and the remaining 30% was used for testing. By verifying the
performance of the model using the remaining 30% of the test data that had not yet been
included in the training dataset, the efficacy and generalizability of the machine learning
models that were created were evaluated. After rigorous performance testing, the ML
model that demonstrated a higher efficacy and accuracy in the recognition of therapeutic
exercises using UWB radar data was selected for the classifying task.

Figure 1. The proposed enhanced research methodology for recognizing therapeutic exercises.

3.2. Data Collection

This study was carried out with meticulous attention to detail, adhering to ethical
principles and receiving approval from the Ethics Committee of the Khawaja Fareed
University of Engineering and Information Technology (KFUEIT). The Ethics Committee
evaluated all of the mandatory aspects needed in order to proceed with this study and
assured that the entire research work was conducted under the principles specified in
the Declaration of Helsinki. The primary emphasis was to observe ethical standards by
protecting the welfare, rights, and privacy of all participants in the research work. The data
collecting process was performed in the ICT building of Khawaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan, observing
and practicing ethical and research standards. The study focused on recognizing five
therapeutic exercises using single UWB radar. Overall, 34 participants were included in the
study, comprising 34 males, and the age range was between 21 to 29 years old.All of the
participants were normal, healthy people. All of the subjects participated voluntarily, and a
consent form was filled in by every subject prior to participation.

In this study, therapeutic exercises including abduction of the left shoulder (LSA),
bilateral abduction of the shoulder (BSA), flexion of the shoulder up (SFU), flexion of the
shoulder down (SFD), and breaststroke (BS) were used, as shown in Figure 2.

Figure 2. Therapeutic exercises and the method of performing them.
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These exercises are used to treat injuries and illnesses in the upper extremities—more
details are presented in Table 1.

Table 1. Details of the therapeutic exercises included in this study along with their rehabilitation purpose.

Physical Therapy Exercises Explanation (How to Perform) Advised for Illness or Injury

LSA Lifting the left arm laterally from the human body
Rotator cuff injuries, frozen
shoulder (Adhesive Capsulitis),
shoulder impingement syndrome

BSA Lifting both arms in parallel, laterally from the human body

SFU Raising the arm forward and upward

SFD Raising the arm forward and downward

BS Simulating circular arm movements akin to swimming Shoulder rehabilitation, improving
range of motion

In this study, we used te PulseON time domain 410 (p410) UWB radar, a compact
impulse-radio UWB radar system placed on a chip, as depicted in Figure 3.

Figure 3. PulseON time domain 410 (p410) UWB radar.

The UWB radar system used a monostatic configuration, with separate transmit
and receive antennas placed close together. The apparatus complied with the Federal
Communications Commission’s (FCC) guidelines for radio wave emissions between 3.1
and 5.3 GHz. With a bandwidth of 2.2 GHz, the waves that were released had a central
frequency of 4.3 GHz. To determine the feasibility of using a single UWB radar as the
exclusive technology for the recognition of therapeutic exercises in a real environment,
a thorough testing protocol was practiced in this study. Upon the recommendation of the
physiotherapist’s guidance, 5 therapeutic exercises, LSA, BSA, SFU, SFD and BS, relevant
to the upper limbs, were selected as the initial experiment. Details of the therapeutic
exercises and their rehabilitation purpose are mentioned in Table 1. The UWB radar was
set up at a distance of 2 m and placed on a stand at a height of 94 cm (at the level of
subject’s chest). Each participant performed each exercise for 15 s and repeated the same
exercise 10 times—this created a comprehensive dataset. During the exercise session in a
real environment, as shown in Figure 4, a rest time was allowed in order to reduce fatigue
and boost the energy of the subject, as prescribed by the therapeutic medication standard.
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Figure 4. Subject Performing LSA excercise.

3.3. Signal Processing and Feature Extraction

The therapeutic exercise data were captured in comma separated value (csv) file
format, the 15 s radar scanned sensation was recorded as a matrix (120 rows, 1440 columns),
capturing 20 rows/s, where each column represented a vector that indicated the radar
return signal in the fast time domain. Similarly, every row of the dataset represented the
signal in the slow time domain. The therapeutic exercise movements can be detected by
calculating the distance of the subject from the radar, using the following formula:

Total scanned distance in centimeters = 950 cm
Total number of columns = 1440 bins / micro-doppler signature
Distance per column covered = 950/1440 = 0.659 cm
The subjects stood at a distance of 2 m, so the upper limb movement can be detected in

between 259 columns to 320 columns (62 columns represent therapeutic exercise movement).
The radar scan outputs are formatted as a matrix, where each column corresponds to a
UWB radar return signal vector spanning a distance of 0.659 cm from the radar. Given the
estimated distance of the subject’s upper limb movements from the radar, approximately
2 m (200 cm), a column range from 259 to 320 was selected to capture the relevant movement
patterns. This range was presumed to include the area where signals associated with the
therapeutic exercises were most likely to be detected. To mitigate clutter effects, the acquired
data were processed using a two-pulse canceller, as described in Equation (1).

Routput = Ri − Ri−1 (1)

The resulting value, Routput, was the result of subtracting the previous radar return
signal Ri−1 from the present radar return signal Ri. This technique successfully filtered out
noise and other anomalies in the UWB radar data. The improved output then provided



Sensors 2024, 24, 5533 9 of 23

a more discernible radar signal, ideal for further processing. The radar scan fragment is
shown in Figure 5, both before and after the pulse canceller was applied.

- 5

(a)

- 1

- 2

- 3

(b)
Figure 5. Representation of pulse canceler effects: (a) radar scan prior to the implementation of a
pulse canceler, and (b) radar scan after the application of a pulse canceler.

By first identifying the peaks in the UWB radar data and then filtering out irrelevant
information, the physiological windows were defined. Key motions in the therapeutic
activities, including body parts approaching or retracting from the radar, were detected
using the peak detection algorithm as significant peaks in the radar data. The presence of
signals related to therapeutic movements was indicated by values surpassing a threshold
of 0.4 × 104, which was utilized to differentiate these peaks. Figure 6 shows the peaks
identified after the elimination of clutter.

- 0.5

- 1

- 1.5

- 2

Figure 6. Clutter removed UWB radar-grams with peaks detected.

The physiological window was created by extending values around the observed
peaks, resulting in a section of the radar signal that encompasses body movements related
to therapeutic exercises, with the recognized peak at its core. A fixed size of 10 was used to
compute each window, which consisted of a range of values adjacent to the peak. In order
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to guarantee the window remained within the radar data bounds, the commencing index
was determined by subtracting half of the window size from the peak index. This allowed
for the inclusion of data points that preceded the peak without extending beyond the start
of the data. In contrast, the peak index was used to determine the ending index, which
was then multiplied by half of the window size. By staying inside the radar data range,
this method retained the window’s validity and properly piqued the relevant peak values.
The physiological window was formed using the created window, which was centered
on the peak, as shown in Figure 7. Iteratively applying this procedure to each observed
peak generated a sequence of windows that depicted the therapeutic exercise motions.
By using this method, it was much easier to analyze the body’s motions, which in turn
helped pinpoint the most effective therapeutic activities.

 − 0.5

 − 1

 − 1.5

 − 2

Figure 7. Clutter removed radar-grams with extracted physiological windows.

The therapeutic exercise signals were characterized and evaluated by deriving distinct
properties for each movement of the exercise. In order to find the maximum amplitude
of each signal, the highest value within each session was determined. Higher amplitudes
indicated more noticeable movements and lower amplitudes indicated more delicate move-
ments; variations in amplitude acted as markers for the presence or absence of therapeutic
movements. In order to examine and differentiate the signal’s frequency components, Fast
Fourier Transform (FFT) was used to study the frequency characteristics of each therapeutic
exercise movement. Further, FFT was used to extract the phase component, which shed
light on the therapeutic activities’ temporal components, such as the timing and synchro-
nization of various frequency components in the signal. In order to provide a complete
picture of the therapeutic exercise signals obtained from the radar data, the calculated
characteristics were averaged over the physiological rhythmic windows. To make sure the
results were similar and relevant, the characteristics were normalized to account for differ-
ences in signal magnitudes. The approach was used to obtain the amplitude, frequency,
and phase components of the radar scan, as shown in Figure 8. The efficiency of amplitude,
frequency, and phase in accurately recording human body activity, posture, and movement
led to their selection as crucial features [21,27].

The amplitude, frequency, and phase related to each therapeutic exercise rhythmic
window were used to extract a set of valuable attributes: amplitude, amplitude mean,
amplitude standard deviation (amplitude SD), amplitude range, phase, phase mean, phase
standard deviation (phase SD), phase range, spectral centroid frequency (SCF), spectral
spread frequency (SSP), spectral skewness frequency (SKNS), spectral kurtosis frequency
(SK), spectral entropy frequency (SEF), spectral flatness frequency (SFLT), spectral crest
frequency (SCF), spectral flux frequency (SF), spectral slope frequency (SSL), spectral
decrease frequency (SD), and spectral rolloff frequency (SRF). The extraction of such aspects
from a radar signal was highly significant, as it allowed for gaining valuable insights into
the inherent distinctive qualities of the signal. Table 2 provides the specific information on
these qualities. In addition, a label was assigned to each extracted feature set to indicate the
category of the accompanying radar scan. For example, LSA:1, BSA:2, SFU:3, SFD:4, BS:5.
The feature sets, together with their corresponding labels, were then stored in a CSV file.
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Figure 8. (a) Amplitude (b) Frequency (c) The phase of the radar scan.

Table 2. Time and frequency domain features and their description.

Feature Explanation

Amplitude
Amplitude is the quantification of the highest magnitude or intensity of a wave or signal, indicating the
distance from its baseline to its peak. The phrase “intensity or magnitude” refers to the level or strength of
the oscillation.

Amplitude Mean Amplitude mean refers to the average magnitude of oscillations in a wave. The signal’s strength is
represented by the central value, which is crucial for studying waveforms in different domains.

Amplitude SD Amplitude standard deviation measures the extent to which individual amplitude values in a waveform
deviate from the average amplitude, reflecting the degree of dispersion or distribution in the data.

Amplitude Range Amplitude range refers to the difference between the highest and lowest values of amplitude in a signal,
which indicates the degree of variation in signal strength.

Phase Phase is a measure of the position of a waveform inside a cycle at a specific moment in time. It is usually
expressed in degrees or radians and indicates the relative alignment of the waveform.

Phase Mean Phase mean is the arithmetic average of the phase values in a dataset. It represents the center tendency of the
phase distribution and is important for understanding cyclic events and signal processing applications.

Phase SD Phase standard deviation is a statistical measure that calculates the extent to which phase values in a dataset
deviate or spread out from their average.

Phase Range Phase range, akin to phase standard deviation, is a statistical metric employed to quantify the variability of
phase values in a dataset.

SCF
Spectral centroid frequency refers to the average frequency of a signal. Determining the centroid of a spectrum
is crucial in audio processing, voice recognition, and music analysis to characterize the timbre and
extract features.

SSP Spectral spread frequency quantifies the extent of frequency dispersion in the spectrum of a signal, providing
information on the distribution and concentration of frequencies.
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Table 2. Cont.

Feature Explanation

SKNS Spectral skewness refers to the measure of the asymmetry of a spectral distribution. It quantifies the degree to
which the spectral energy is concentrated towards the higher or lower frequencies.

SK Spectral kurtosis Frequency quantifies the degree of sharpness or uniformity of the frequency distribution in
the spectrum of a signal, offering valuable information about the existence of sudden or abrupt elements.

SEF Spectral entropy refers to the measure of the randomness or complexity of a signal’s frequency content.

SFLT Spectral flatness refers to the measure of how evenly distributed the energy is across different frequencies in a
signal. Frequency is a measure of the tonality or timbral richness of a signal’s frequency spectrum.

SCF Spectral crest frequency is a measure of the prominence of the greatest peak in the frequency spectrum. It is
calculated by dividing the maximum amplitude in the spectrum by the average amplitude.

SF Spectral flux frequency measures the change in spectral content between consecutive frames, reflecting
variations in energy distribution over time in a frequency spectrum.

SSL Spectral slope frequency refers to the rate at which the spectral amplitude distribution changes with respect to
frequency. It indicates the speed at which energy levels decline or increase across the spectrum.

SD
Spectral decrease refers to the reduction in the intensity or amplitude of frequencies in a sound signal as the
frequency increases. Frequency is a measure of how quickly the amount of energy in a spectrum declines as
the frequency increases.

SRF
Spectral rolloff frequency denotes the threshold below which a specific proportion of the overall spectral
energy is concentrated, signifying the boundary where the high-frequency components of the signal spectrum
are attenuated.

3.4. Proposed Feature Engineering Approach

The research presents a novel technique for feature engineering designed to recognize
therapeutic exercises using UWB radar signals. This feature extraction approach is an
essential component of the proposed system. Figure 9 illustrates the application of this
feature engineering technique. The parameters of the CNN and RF models, as mentioned
in Table 3, were carefully selected through a series of iterative experiments.

Figure 9. The workflow demonstrates the novel proposed feature fusion technique.

CNN was selected for extracting important temporal features because of its efficacy in
capturing local patterns, which are crucial for assessing the dynamic aspects of therapeutic
exercise data. Concurrently, the pre-processed dataset was fed into the RF model to
extract features associated with the probability of predicting classes. RF, renowned for
its ability to effectively handle intricate datasets, offers significant insights regarding the
probability of connections within various categories. By leveraging the strengths of both
models, the design achieved feature fusion. A novel feature set was created by merging
the temporal prediction probabilities from CNN with the class prediction probabilities
from RF, as shown in Figure 9. This fusion maximizes the discrimination among classes
and minimizes intra-class variance, resulting in outstanding effectiveness for identifying
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therapeutic exercises. The specific implementation of the feature fusion technique in
Figure 9 involves extracting temporal features using CNN, which captures the local patterns
and dynamics of the therapeutic exercises. Simultaneously, the dataset is processed by the
RF model to generate class prediction probabilities. These probabilities are then combined
to form a comprehensive feature set, enhancing the model’s ability to discriminate between
different classes and improve the overall recognition accuracy.

Table 3. Details of the novel feature extraction approach.

CNN

Layer Type Parameters Activation

Conv1D Filters: 64, Kernel Size: 3 ReLU

MaxPooling1D Pool Size: 2 -

Flatten - -

Dense Units: 64 ReLU

Dense Units: 16 Softmax

RF

n_estimators = 100, Max_depth = 3, random_state = 123

3.5. Employed Machine Learning Models

In emerging AI technologies, machine learning is widely used in medical sciences
and the physiotherapy industry. Machine learning services are employed for diagnosis
assistance, treatment planning, patient monitoring systems, and cancer disease prediction.
In light of the above-mentioned research studies, machine learning algorithms can be
applied for the recognition of therapeutic exercise data acquired from UWB radars. In this
study, the Ridge Classifier, RF, Gradient Boosting Machine (GBM), Ada Boost, Naïve Bayes
classifiers, and EnsembleRRGraBoost ensemble methods were also trained. The accuracy
and efficiency of machine learning models is reliant on hyperparameter tuning. To identify
the appropriate parameters, a grid search technique was employed in this study. The
most effective performance of each machine learning classifier was evaluated based on the
parameter values to recognize therapeutic exercises. The overall objective was to enhance
the classifier accuracy, recall, precision, and F1 score. Table 4 shows the machine learning
classifiers along with their best explored parameter values. This is a significant detail that
impacts the performance of machine learning models.

Table 4. Details of the appropriate values for the classifier’s parameters with hyperparameters
turning using the grid search technique.

Methods Parameters with Appropriate Values (Hyperparameter Tuning Using the Grid Search Approach)

Ridge alpha = 1.0, random_state = 123

RF Max_depth = 3, n_estimators = 100, random_state = 123

GBM learning_rate = 0.1, max_depth = 3, n_estimators = 100, random_state = 123

Ada Boost algorithm = ‘SAMME.R’, learning_rate = 1.0, n_estimators = 50, random_state = 123

GNB priors = None, var_smoothing = 1e-09

EnsembleRRGraBoost Base models: RF and GBM.
RF hyperparameters: Max_depth = 3, n_estimators = 100, random_state = 123
GBM hyperparameters: learning_rate = 0.1, max_depth = 3, n_estimators = 100, random_state = 123
Meta Model: Ridge Regression.
Ridge Regression hyperparameters: alpha = 1.0, random_state = 123
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Table 4. Cont.

DNN

Layer Type Parameters Activation

Dense 64 units relu

Dense 64 units relu

Dense 5 units softmax

CNN

Layer Type Parameters Activation

Conv2D Filters 32, kernel size (3,1) relu

MaxPooling Kernel size (2,1) -

Dropout 0.25 -

Conv2D Filters 64, kernel size (3,1) relu

MaxPooling Kernel size (2,1) -

Dropout 0.25 -

Flatten - -

Dense 128 units relu

Dropout 0.25 -

4. Results and Discussion

Machine learning methods are widely used for the recognition of human activities,
human motion recognition, pose estimation, and the classification of physical exercises.
In this study, machine learning methods were applied for the recognition of therapeutic
exercises based on a UWB- radar-based detected dataset. The performance of the machine
learning model was measured using essential performance metrics of accuracy, precision,
recall, and F1 score. The accuracy metric assessed the general accuracy of the machine-
learning-based detection system, whereas the prevision and recall performance metrics
dealt with correctly classifying each therapeutic exercise by minimizing the occurrence of
false positives and false negatives. The F1 score depicted the balance between precision and
recall. The F1 score also provided balanced information about athe machine learning model,
demonstrating its effectiveness in cases of imbalanced datasets. The distribution of labels
revealed valuable information about the composition of the dataset and the distribution of
therapeutic exercise samples. In this study, a relatively equal representative, well-balanced
dataset including five therapeutic exercises, LSA, BSA, SFU, SFD, and BS, was collected, as
depicted in Figure 10. This helped achieve accurate and reliable outcomes from machine
learning models.



Sensors 2024, 24, 5533 15 of 23

40,110 40,098 40,067 40,083

19,230

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

LSA BSA SFU SFD BS

C
o
u
n
ts

Labels

Figure 10. Distribution of class-wise samples.

4.1. Data Splitting

The dataset was divided into two sets, 70% and 30%, for training and testing pur-
poses respectively. Data distribution was achieved using the stratify sampling tech-
nique to ensure equal representation of each class. The 70% training dataset comprised
12,5711 total samples distributed as follows for each therapeutic exercise: LSA 28,077,
BSA 28,068, SFU 28,047, SFD 28,058, and BS 13,461. The 30% test dataset included 53,877 to-
tal samples, distributed as follows for each therapeutic exercise: LSA 12,033, BSA 12,030,
SFU 12,020, SFD 12,025, and BS 5769, as depicted in Figures 11 and 12. This is a systematic
methodology was used to create a well-rounded dataset for therapeutic exercise recognition.
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Figure 11. Data splitting for each therapeutic exercise.
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Figure 12. Sample distribution in the training and testing dataset.

4.2. Results Using Temporal and Spectral Features

The features used in the study included amplitude, frequency, and phase-related
attributes extracted from the rhythmic window for each therapeutic exercise.This study
utilized eight machine learning models to evaluate their categorization capability on a
preprocessed dataset derived from UWB radar signals. Table 5 displays a succinct summary
of the performance metrics for six models: Ridge; RF; GBM; AdaBoost; GNB; and an
ensemble method, EnsembleRRGraBoost; DNN; and CNN.

Table 5. Performance metrics for different methods on Temporal and Spectral Features.

Method Accuracy Precision Recall F1

Ridge 26.81% 27.87% 26.81% 24.35%
RF 27.54% 27.11% 27.54% 26.86%
GBM 28.76% 29.06% 28.76% 26.97%
AdaBoost 28.21% 28.62% 28.21% 26.34%
GNB 24.64% 22.92% 24.64% 14.86%
EnsembleRRGraBoost 29.02% 29.42% 29.02% 27.20%
DNN 26.81% 27.85% 26.80% 24.25%
CNN 27.45% 27.05% 27.10% 26.56%

GBM outperformed other models, exhibiting a superior accuracy, precision, recall,
and F1 score. This demonstrated the efficacy of GBM for accurately classifying events
based on the initial set of characteristics. AdaBoost closely followed GBM, demonstrating
an excellent performance for all aspects. Although the RF and Ridge models produced
similar results, they exhibited a slightly worse performance relative to GBM and AdaBoost.
The performance of GNB, however, showed a significant reduction, marked by a reduced
precision and F1 score. The ensemble model, which synergistically combined the advan-
tages of Ridge Regression and Gradient Boosting, exceeded all individual models in terms
of the projected accuracy, precision, recall, and F1 score. This highlights the advantages of
using multiple basic models to enhance the overall precision of forecasts, as depicted in
Figure 13. Among the neural network models applied for classification, DNN achieved an
accuracy, precision, recall, and F1 score of 26.81%, 27.87%, 26.81%, and 24.35%, respectively,
and CNN achieved 27.54%, 27.11%, 27.54%, and 26.86%, respectovely, in the same measures.
Despite the comprehensive set of features extracted, the accuracy reported in Table 5 was
lower than expected. This lower accuracy indicates that the individual features alone were
not sufficient to provide an optimal classification performance. The feature fusion approach
was employed to address this limitation by combining multiple features to improve the
recognition of therapeutic exercises.

These findings highlight the importance of using feature selection and model com-
bination strategies to optimize classification issues. By utilising ensemble methods and
selecting appropriate algorithms, it was possible to increase the precision and robustness of
the classification models. Hence, by enhancing their practical applicability, further explo-
ration might involve fine-tuning model parameters, exploring other feature engineering
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strategies, and assessing the model performance on new datasets based on feature fusion
techniques to verify their ability to generalize.

Figure 13. Visualization performance metrics acquired on the original feature set.

4.3. Results with Proposed Feature Engineering

This section presents the results measured through the innovative feature fusion
method, based on the proposed feature engineering technique in our study. The utilization
of innovative feature engineering techniques has led to substantial improvements in the
efficacy of all machine learning models, as depicted in Table 6 and visualized in Figure 14.

Table 6. Performance metrics for different methods.

Method Accuracy Precision Recall F1

Ridge 98.48% 98.48% 98.48% 98.48%
RF 98.43% 98.43% 98.43% 98.43%
GBM 98.47% 98.47% 98.47% 98.47%
AdaBoost 93.92% 94.37% 93.92% 93.78%
GNB 98.45% 98.45% 98.45% 98.45%
EnsembleRRGraBoost 99.45% 99.45% 99.45% 99.45%
DNN 98.48% 98.49% 98.48% 98.48%
CNN 98.47% 98.48% 98.48% 98.48%

Figure 14. Visualization performance metrics, recorded on fusion features set.
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This further validates the efficacy of ensemble methodologies for optimizing forecast
precision. To summarize, the results unequivocally demonstrated that the proposed fea-
ture engineering procedures significantly enhamced the precision and dependability of
machine learning models for classification tasks. Further work may involve enhancing the
engineering aspects and assessing the model performance on diverse datasets to verify
their potential for widespread application in the recognition of therapeutic exercises.

4.4. K-Fold Cross-Validations Results

The performance evaluation of the recommended machine learning methods was
conducted using k-fold cross-validation. The features were divided into five subsets to
accomplish validation. The findings shown in Table 7 and their comparison depicted in
Figure 15 reveal a consistently high level of precision in the Ridge, RF, and GBM models,
with a low variation, suggesting a steady performance throughout many folds of the
cross-validation process.

Table 7. Accuracy and standard deviation for different methods.

Method Accuracy Standard Deviation (+/−)

Ridge 98.49% 0.0019
RF 98.47% 0.0012
GBM 98.47% 0.0013
AdaBoost 86.21% 0.0504
GNB 98.47% 0.0018
EnsembleRRGraBoost 99.50% 0.0012
DNN 98.47% 0.0012
CNN 98.49% 0.0013

AdaBoost exhibited a somewhat inferior accuracy in comparison with other models,
accompanied by a greater standard deviation, indicating a notable fluctuation in perfor-
mance across various folds. Similarly, GNB demonstrated a moderate level of accuracy
with a relatively small standard deviation.

Figure 15. Cross-validation score with standard deviation bar.

The ensemble model, EnsembleRRGraBoost, consisting of Ridge, RF and GBM, achieved
the highest accuracy compared with all of the other models, with a low standard deviation.
This suggests that the model performed well consistently over multiple cross-validation
folds, suggesting its robustness and stability. The DNN model attained an accuracy of
98.47% with a standard deviation of 0.0012, while the CNN model reached an accuracy



Sensors 2024, 24, 5533 19 of 23

of 98.49% with a standard deviation of 0.0013. The findings indicate that both DNN and
CNN demonstrated an exceptional performance, with a high level of accuracy and low
variation observed across multiple iterations of the cross-validation process. The k-fold
cross-validation findings offered vital insights into the generalizability and stability of
the machine learning models. The k-fold cross-validation helped to evaluate the models’
performance under different settings and test their effectiveness for classification tasks.

4.5. Computation Complexity Analysis

The runtime computation complexity analysis of the applied machine learning models
with the proposed feature engineering technique is recorded in seconds, as shown in Table 8.
The Ridge Regression algorithm took 2.82 s to execute, mainly due to the computational
cost involved in performing matrix operations. The RF algorithm took 2.84 s to complete
and involved building multiple decision trees. GBM built trees sequentially to correct errors
and completed the work in 2.71 s. The AdaBoost method, which combined many weak
learners like decision stumps, had a processing time of 2.19 s, indicating a faster perfor-
mance. The GNB method had the shortest processing time, accomplishing the challenge
in 2.12 s. This could be due to its reliance on clear assumptions on the independence of
features. The composite technique, which likely incorporates models such as ridge regres-
sion, random forest, and gradient booster machine, took 2.26 s to execute. DNN attained a
precision of 98.47% with a standard deviation of 0.0012, while CNN acquired a precision of
98.49% with a standard deviation of 0.0013. The findings indicate that both DNN and CNN
exhibited an exceptional performance, demonstrating excellent accuracy and minimum
variability throughout multiple folds of the cross-validation technique. The EnsembleR-
RGraBoost algorithm demonstrated that it took a reasonable amount of time to perform
feature engineering in order to precisely classify the instance of therapeutic exercise.

Table 8. The runtime computation complexity analysis of the proposed machine learning methods.

Method Runtime Computations (Seconds)

Ridge 2.82
RF 2.84
GBM 2.71
AdaBoost 2.19
GNB 2.12
EnsembleRRGraBoost 2.26
DNN 2.62
CNN 2.73

5. Discussion

This research investigated machine learning approaches for classifying therapeu-
tic exercises by analyzing a dataset acquired from UWB radar emissions.Because of the
inherent complexities in data related to performing therapeutic exercises in a real envi-
ronment, the initial findings of the machine learning models were limited by the original
features. The initial findings of machine learning models were constrained by the original
features.The introduction of a novel feature fusion approach that extracted temporal and
prediction probability features resulted in a significant advancement. This innovative
strategy greatly improved the machine learning model performance.Ridge, RF, GBM, and
EnsembleRRGraBoost achieved an accuracy from 26.81%, 27.54%, 28.76%, and 29.02% to
98.48%, 98.43%, 98.47%, and 99.45%, respectively. The utilization of k-fold cross-validation
highlighted the robustness and ability to apply the machine learning models to new data.
The performance metrics for DNN and CNN showed consistent accuracy across multiple
iterations. DNN maintained an accuracy of 98.48% in all four reported instances, while
CNN showed a slight variation, ranging from 98.47% to 98.48%. The ensemble model
exhibited the highest accuracy and minimal standard deviation, indicating its stability
over different folds. The results emphasize the capability of machine learning methods,
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especially when combined with creative feature engineering, to improve the accuracy and
reliability of therapeutic exercise identification systems. This study is limited by its sole
focus on upper limb shoulder exercises.Although the therapeutic exercises were performed
in a controlled environment, applying these methods in a real clinical setting presents
challenges, particularly when multiple subjects are performing the same or different thera-
peutic exercises simultaneously. Additionally, lower limb therapeutic exercises were not
included in this study.

Ridge was the most successful model, achieving superior levels of accuracy, precision,
recall, and F1 score compared with all of the other individual models. All of the measures
attained a remarkable 98.48%. The RF, Ridge, and GNB models consistently yielded
outstanding performance enhancements, reaching an accuracy, precision, recall, and F1
score of over 98%. This demonstrates the effectiveness of the proposed feature engineering
procedures in enhancing the predictive capabilities of the models. The performance of
AdaBoost exhibited a substantial improvement in comparison with the outcomes obtained
using the original features. Although the metrics of this model were still lower than those of
the other models, the incorporation of feature engineering led to a substantial enhancement
in accuracy, precision, recall, and F1 score. In addition, both the DNN and CNN models
demonstrated an outstanding performance, surpassing or obtaining a score of 98.47% for
all parameters, including accuracy, precision, recall, and F1 score. DNN attained a 98.48%
accuracy across all measurements, while CNN earned a 98.47% accuracy and marginally
superior metrics in other domains, showcasing the robustness and durability of these neural
network designs. The ensemble model, which combined Ridge Regression and Gradient
Boosting, consistently outperformed all individual models, achieving an extraordinary
accuracy, precision, recall, and F1 score of 99.45%.

Recent advancements in UWB radar feature extraction include time-frequency analysis
methods like STFT and Wavelet Transform; deep learning techniques such as CNNs and
RNNs; and statistical methods like higher-order statistics and PSD. While these methods
provide valuable insights into radar signals, the technique presented in the paper demon-
strates several key strengths. It effectively integrates CNNs and RF models, combining
temporal feature extraction with probabilistic class prediction, which enhances both the
robustness and accuracy of UWB radar signal analysis. The approach excels in feature
fusion by merging CNN-derived temporal prediction probabilities with RF-derived class
prediction probabilities, leading to an improved classification performance. This method’s
adaptability allows it to be applied to various radar signals and therapeutic exercises,
showcasing its versatility. It significantly enhances the performance by maximizing class
discrimination and minimizing intra-class variance, surpassing traditional methods. Addi-
tionally, the comprehensive analysis provided by integrating multiple data sources and
feature extraction techniques offers a deeper understanding and greater utility of radar
signals, highlighting the paper’s innovative approach and effectiveness for improving
UWB radar performance and exercise recognition.

6. Conclusions

In this study, a novel approach was developed for the classification of therapeutic
exercises using a single UWB radar sensor in a real environment with state-of-art machine
learning models. The proposed approach will benefit physiotherapists by allowing them to
monitor patients performing therapeutic exercises at physiotherapy centers. It can also be
recommended for use by patients in remote areas as part of a Physiotherapy Computer-
Aided System (CAD), while overcomming concerns like privacy, body occlusion while
using opto-electronic sensors, and discomfort when using physical contact-based technolo-
gies. In this work, a UWB radar was used at a specific distance in a real environment to
capture the data while the subject performed the therapeutic exercises with ease and com-
fort. Due to the inherent complexities, such as noise, when performing therapeutic exercises
in a real environment, the initial findings of the machine learning models were limited
by the original features. The application of a novel feature fusion approach that extracted
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temporal and prediction probability features resulted in a significant improvement. This in-
novative strategy significantly improved the machine learning model performance. Ridge,
RF, GBM, DNN, CNN, and EnsembleRRGraBoost achieved accuracies from 26.81%, 27.54%,
28.76%, 26.81%, 27.45%, and 29.02% to 98.48%, 98.43%, 98.47%, 98.48%, 98.47%, and 99.45%,
respectively. Finally, the ensemble model, consisting of Ridge, RF, and GBM, achieved
the highest accuracy, 99.45%, compared with all of the other models, with a low standard
deviation. The utilization of k-fold cross-validation highlighted the robustness and ability
to apply the machine learning models to new data. Future research will focus on including
a broader and more diverse group of participants, encompassing various ages, genders,
and health conditions. This will enhance the generalizability of the findings and ensure
that the system’s effectiveness is validated across a wider demographic. Additionally,
future work will involve gathering more detailed information about therapeutic exercises
beyond simple recognition. This will include counting the frequency of each exercise,
assessing the intensity (low, moderate, or severe), measuring the angle of rotation (range of
motion), and recording the duration (how long each exercise is performed). Plans are also
in place to evaluate the system’s performance in a real physiotherapy center with multiple
subjects to better simulate actual conditions. Expanding the system’s functionality to in-
clude therapeutic exercises for the lower limbs is another key goal. These advancements
will provide a more comprehensive assessment and broaden the system’s applicability in
various therapeutic contexts.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ML Machine Learning
KFUEIT Khawaja Fareed University of Engineering and Information Technology
GBM Gradient Boosting Machine
GNB Gaussian Naïve Bayes
BSA Bilateral Shoulder Abduction
SCF Spectral spread frequency
UWB Ultrawide band
LSA Left Shoulder Abduction
SSP Spectral spread frequency
SFU Shoulder Flexion Up
SKNS Spectral skewness
BS Breaststroke
SK Spectral kurtosis Frequency
SEF Spectral crest frequency



Sensors 2024, 24, 5533 22 of 23

SFD Shoulder Flexion Down
SF Spectral flux frequency
CNN Convolutional Neural Network
SSL Spectral slope frequency
RF Random Forest
SRF Spectral rolloff frequency
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