Mediterranean Diet and Sleep Features: A Systematic Review of Current Evidence
Artículo
Materias > Alimentación
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
The prevalence of sleep disorders, characterized by issues with quality, timing, and sleep duration is increasing globally. Among modifiable risk factors, diet quality has been suggested to influence sleep features. The Mediterranean diet is considered a landmark dietary pattern in terms of quality and effects on human health. However, dietary habits characterized by this cultural heritage should also be considered in the context of overall lifestyle behaviors, including sleep habits. This study aimed to systematically revise the literature relating to adherence to the Mediterranean diet and sleep features in observational studies. The systematic review comprised 23 reports describing the relation between adherence to the Mediterranean diet and different sleep features, including sleep quality, sleep duration, daytime sleepiness, and insomnia symptoms. The majority of the included studies were conducted in the Mediterranean basin and reported a significant association between a higher adherence to the Mediterranean diet and a lower likelihood of having poor sleep quality, inadequate sleep duration, excessive daytime sleepiness or symptoms of insomnia. Interestingly, additional studies conducted outside the Mediterranean basin showed a relationship between the adoption of a Mediterranean-type diet and sleep quality, suggesting that biological mechanisms sustaining such an association may exist. In conclusion, current evidence suggests a relationship between adhering to the Mediterranean diet and overall sleep quality and different sleep parameters. The plausible bidirectional association should be further investigated to understand whether the promotion of a healthy diet could be used as a tool to improve sleep quality.
metadata
Godos, Justyna; Ferri, Raffaele; Lanza, Giuseppe; Caraci, Filippo; Rojas Vistorte, Angel Olider; Yélamos Torres, Vanessa; Grosso, Giuseppe y Castellano, Sabrina
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, angel.rojas@uneatlantico.es, vanessa.yelamos@funiber.org, SIN ESPECIFICAR, SIN ESPECIFICAR
(2024)
Mediterranean Diet and Sleep Features: A Systematic Review of Current Evidence.
Nutrients, 16 (2).
p. 282.
ISSN 2072-6643
|
Texto
nutrients-16-00282-v2.pdf Available under License Creative Commons Attribution. Descargar (469kB) | Vista Previa |
Resumen
The prevalence of sleep disorders, characterized by issues with quality, timing, and sleep duration is increasing globally. Among modifiable risk factors, diet quality has been suggested to influence sleep features. The Mediterranean diet is considered a landmark dietary pattern in terms of quality and effects on human health. However, dietary habits characterized by this cultural heritage should also be considered in the context of overall lifestyle behaviors, including sleep habits. This study aimed to systematically revise the literature relating to adherence to the Mediterranean diet and sleep features in observational studies. The systematic review comprised 23 reports describing the relation between adherence to the Mediterranean diet and different sleep features, including sleep quality, sleep duration, daytime sleepiness, and insomnia symptoms. The majority of the included studies were conducted in the Mediterranean basin and reported a significant association between a higher adherence to the Mediterranean diet and a lower likelihood of having poor sleep quality, inadequate sleep duration, excessive daytime sleepiness or symptoms of insomnia. Interestingly, additional studies conducted outside the Mediterranean basin showed a relationship between the adoption of a Mediterranean-type diet and sleep quality, suggesting that biological mechanisms sustaining such an association may exist. In conclusion, current evidence suggests a relationship between adhering to the Mediterranean diet and overall sleep quality and different sleep parameters. The plausible bidirectional association should be further investigated to understand whether the promotion of a healthy diet could be used as a tool to improve sleep quality.
| Tipo de Documento: | Artículo |
|---|---|
| Palabras Clave: | Mediterranean diet; sleep; insomnia; daytime sleepiness; observational studies |
| Clasificación temática: | Materias > Alimentación |
| Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica |
| Depositado: | 08 May 2024 19:07 |
| Ultima Modificación: | 08 May 2024 19:07 |
| URI: | https://repositorio.uniromana.edu.do/id/eprint/10840 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/26722/1/nutrients-18-00257.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: The growing integration of Artificial Intelligence (AI) and chatbots in health professional education offers innovative methods to enhance learning and clinical preparedness. This study aimed to evaluate the educational impact and perceptions in university students of Human Nutrition and Dietetics, regarding the utility, usability, and design of the E+DIEting_Lab chatbot platform when implemented in clinical nutrition training. Methods: The platform was piloted from December 2023 to April 2025 involving 475 students from multiple European universities. While all 475 students completed the initial survey, 305 finished the follow-up evaluation, representing a 36% attrition rate. Participants completed surveys before and after interacting with the chatbots, assessing prior experience, knowledge, skills, and attitudes. Data were analyzed using descriptive statistics and independent samples t-tests to compare pre- and post-intervention perceptions. Results: A total of 475 university students completed the initial survey and 305 the final evaluation. Most university students were females (75.4%), with representation from six languages and diverse institutions. Students reported clear perceived learning gains: 79.7% reported updated practical skills in clinical dietetics and communication were updated, 90% felt that new digital tools improved classroom practice, and 73.9% reported enhanced interpersonal skills. Self-rated competence in using chatbots as learning tools increased significantly, with mean knowledge scores rising from 2.32 to 2.66 and skills from 2.39 to 2.79 on a 0–5 Likert scale (p < 0.001 for both). Perceived effectiveness and usefulness of chatbots as self-learning tools remained positive but showed a small decline after use (effectiveness from 3.63 to 3.42; usefulness from 3.63 to 3.45), suggesting that hands-on experience refined, but did not diminish, students’ overall favorable views of the platform. Conclusions: The implementation and pilot evaluation of the E+DIEting_Lab self-learning virtual patient chatbot platform demonstrate that structured digital simulation tools can significantly improve perceived clinical nutrition competences. These findings support chatbot adoption in dietetics curricula and inform future digital education innovations.
Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Arturo Ortega-Mansilla mail arturo.ortega@uneatlantico.es, Thomas Prola mail thomas.prola@uneatlantico.es, Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es,
Elío Pascual
<a class="ep_document_link" href="/26848/1/nutrients-17-03853.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease driven by persistent inflammation and oxidative stress. Ilex paraguariensis (yerba mate) contains bioactive compounds—particularly chlorogenic acids, quercetin, and rutin—with documented antioxidant and anti-inflammatory properties. Objectives: To systematically review the mechanistic and clinical evidence on Ilex paraguariensis and its main constituents in RA-relevant inflammatory, oxidative, and bone metabolic pathways. Methods: Following PRISMA 2020, PubMed/MEDLINE, LILACS, and SciELO were searched up to September 2025. Eligible studies included yerba mate preparations (last 10 years) or isolated compounds (last 5 years) assessing RA-relevant clinical, inflammatory, oxidative, or bone metabolic outcomes. Non-original studies were excluded. Owing to heterogeneity, findings were narratively synthesized, and risk of bias was evaluated using RoB 2, ROBINS-I, OHAT, and SYRCLE. Results: Twenty-three studies met inclusion criteria: 11 human (clinical or observational), 7 human-based in vitro, and 5 animal studies. Interventions with yerba mate infusions or standardized extracts suggest reductions in inflammatory markers (e.g., C-reactive protein, interleukin-6) and indicate improvements in glutathione-related oxidative balance. Evidence from isolated compounds, particularly quercetin and rutin, suggests comparable anti-inflammatory and antioxidant effects. Preclinical studies appear to indicate modulation of inflammatory and redox pathways relevant to RA. Conclusions: Yerba mate and its constituents show preliminary indications of anti-inflammatory and antioxidant effects with potential relevance to RA pathophysiology. However, in the absence of clinical trials in RA patients, conclusions remain tentative, constrained by small sample sizes, methodological heterogeneity, species differences, and internal validity concerns. Future research should include rigorously designed randomized trials and mechanistic studies using advanced human-relevant platforms, such as organoids and organ-on-chip systems.
Manuela Cassotta mail manucassotta@gmail.com, Qingwei Cao mail , Haixia Hu mail , Carlos Rabeiro Martinez mail , Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,
Cassotta
en
close
Single-cell omics for nutrition research: an emerging opportunity for human-centric investigations
Understanding how dietary compounds affect human health is challenged by their molecular complexity and cell-type–specific effects. Conventional multi-cell type (bulk) analyses obscure cellular heterogeneity, while animal and standard in vitro models often fail to replicate human physiology. Single-cell omics technologies—such as single-cell RNA sequencing, as well as single-cell–resolved proteomic and metabolomic approaches—enable high-resolution investigation of nutrient–cell interactions and reveal mechanisms at a single-cell resolution. When combined with advanced human-derived in vitro systems like organoids and organ-on-chip platforms, they support mechanistic studies in physiologically relevant contexts. This review outlines emerging applications of single-cell omics in nutrition research, emphasizing their potential to uncover cell-specific dietary responses, identify nutrient-sensitive pathways, and capture interindividual variability. It also discusses key challenges—including technical limitations, model selection, and institutional biases—and identifies strategic directions to facilitate broader adoption in the field. Collectively, single-cell omics offer a transformative framework to advance human-centric nutrition research.
Manuela Cassotta mail manucassotta@gmail.com, Yasmany Armas Diaz mail , Danila Cianciosi mail , Bei Yang mail , Zexiu Qi mail , Ge Chen mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Giuseppe Grosso mail , José L. Quiles mail , Jianbo Xiao mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,
Cassotta
<a href="/17880/1/nutrients-17-03613.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17880/1.hassmallThumbnailVersion/nutrients-17-03613.pdf" border="0"/></a>
en
open
Background/Objectives: Estimating energy and macronutrients from food images is clinically relevant yet challenging, and rigorous evaluation requires transparent accuracy metrics with uncertainty and clear acknowledgement of reference data limitations across heterogeneous sources. This study assessed ChatGPT-5, a general-purpose vision-language model, across four scenarios differing in the amount and type of contextual information provided, using a composite dataset to quantify accuracy for calories and macronutrients. Methods: A total of 195 dishes were evaluated, sourced from Allrecipes.com, the SNAPMe dataset, and Home-prepared, weighed meals. Each dish was evaluated under Case 1 (image only), Case 2 (image plus standardized non-visual descriptors), Case 3 (image plus ingredient lists with amounts), and Case 4 (replicates Case 3 but excluding the image). The primary endpoint was kcal Mean Absolute Error (MAE); secondary endpoints included Median Absolute Error (MedAE) and Root Mean Square Error (RMSE) for kcal and macronutrients (protein, carbohydrates, and lipids), all reported with 95% Confidence Intervals (CIs) via dish-level bootstrap resampling and accompanied by absolute differences (Δ) between scenarios. Inference settings were standardized to support reproducibility and variance estimation. Source stratified analyses and quartile summaries were conducted to examine heterogeneity by curation level and nutrient ranges, with additional robustness checks for error complexity relationships. Results and Discussion: Accuracy improved from Case 1 to Case 2 and further in Case 3 for energy and all macronutrients when summarized by MAE, MedAE, and RMSE with 95% CIs, with absolute reductions (Δ) indicating material gains as contextual information increased. In contrast to Case 3, estimation accuracy declined in Case 4, underscoring the contribution of visual cues. Gains were largest in the Home-prepared dietitian-weighed subset and smaller yet consistent for Allrecipes.com and SNAPMe, reflecting differences in reference curation and measurement fidelity across sources. Scenario-level trends were concordant across sources, and stratified and quartile analyses showed coherent patterns of decreasing absolute errors with the provision of structured non-visual information and detailed ingredient data. Conclusions: ChatGPT-5 can deliver practically useful calorie and macronutrient estimates from food images, particularly when augmented with standardized nonvisual descriptors and detailed ingredients, as evidenced by reductions in MAE, MedAE, and RMSE with 95% CIs across scenarios. The decline in accuracy observed when the image was omitted, despite providing detailed ingredient information, indicates that visual cues contribute meaningfully to estimation performance and that improvements are not solely attributable to arithmetic from ingredient lists. Finally, to promote generalizability, it is recommended that future studies include repeated evaluations across diverse datasets, ensure public availability of prompts and outputs, and incorporate systematic comparisons with non-artificial-intelligence baselines.
Marcela Rodríguez- Jiménez mail , Gustavo Daniel Martín-del-Campo-Becerra mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Jorge Crespo-Álvarez mail jorge.crespo@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Rodríguez- Jiménez
<a class="ep_document_link" href="/17885/1/s41598-025-26052-7.pdf"><img class="ep_doc_icon" alt="[img]" src="/17885/1.hassmallThumbnailVersion/s41598-025-26052-7.pdf" border="0"/></a>
en
open
Mango is one of the most beloved fruits and plays an indispensable role in the agricultural economies of many tropical countries like Pakistan, India, and other Southeast Asian countries. Similar to other fruits, mango cultivation is also threatened by various diseases, including Anthracnose and Red Rust. Although farmers try to mitigate such situations on time, early and accurate detection of mango diseases remains challenging due to multiple factors, such as limited understanding of disease diversity, similarity in symptoms, and frequent misclassification. To avoid such instances, this study proposes a multimodal deep learning framework that leverages both leaf and fruit images to improve classification performance and generalization. Individual CNN-based pre-trained models, including ResNet-50, MobileNetV2, EfficientNet-B0, and ConvNeXt, were trained separately on curated datasets of mango leaf and fruit diseases. A novel Modality Attention Fusion (MAF) mechanism was introduced to dynamically weight and combine predictions from both modalities based on their discriminative strength, as some diseases are more prominent on leaves than on fruits, and vice versa. To address overfitting and improve generalization, a class-aware augmentation pipeline was integrated, which performs augmentation according to the specific characteristics of each class. The proposed attention-based fusion strategy significantly outperformed individual models and static fusion approaches, achieving a test accuracy of 99.08%, an F1 score of 99.03%, and a perfect ROC-AUC of 99.96% using EfficientNet-B0 as the base. To evaluate the model’s real-world applicability, an interactive web application was developed using the Django framework and evaluated through out-of-distribution (OOD) testing on diverse mango samples collected from public sources. These findings underline the importance of combining visual cues from multiple organs of plants and adapting model attention to contextual features for real-world agricultural diagnostics.
Muhammad Mohsin mail , Muhammad Shadab Alam Hashmi mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,
Mohsin
