Prediction of leukemia peptides using convolutional neural network and protein compositions
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Cerrado
Inglés
Leukemia is a type of blood cell cancer that is in the bone marrow’s blood-forming cells. Two types of Leukemia are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lymphocytic and myeloid leukemias. This work evaluates a unique deep convolutional neural network (CNN) classifier that improves identification precision by carefully examining concatenated peptide patterns. The study uses leukemia protein expression for experiments supporting two different techniques including independence and applied cross-validation. In addition to CNN, multilayer perceptron (MLP), gated recurrent unit (GRU), and recurrent neural network (RNN) are applied. The experimental results show that the CNN model surpasses competitors with its outstanding predictability in independent and cross-validation testing applied on different features extracted from protein expressions such as amino acid composition (AAC) with a group of AAC (GAAC), tripeptide composition (TPC) with a group of TPC (GTPC), and dipeptide composition (DPC) for calculating its accuracies with their receiver operating characteristic (ROC) curve. In independence testing, a feature expression of AAC and a group of GAAC are applied using MLP and CNN modules, and ROC curves are achieved with overall 100% accuracy for the detection of protein patterns. In cross-validation testing, a feature expression on a group of AAC and GAAC patterns achieved 98.33% accuracy which is the highest for the CNN module. Furthermore, ROC curves show a 0.965% extraordinary result for the GRU module. The findings show that the CNN model is excellent at figuring out leukemia illnesses from protein expressions with higher accuracy.
metadata
Khawaja, Seher Ansar; Farooq, Muhammad Shoaib; Ishaq, Kashif; Alsubaie, Najah; Karamti, Hanen; Caro Montero, Elizabeth; Silva Alvarado, Eduardo René y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, SIN ESPECIFICAR
(2024)
Prediction of leukemia peptides using convolutional neural network and protein compositions.
BMC Cancer, 24 (1).
ISSN 1471-2407
|
Texto
s12885-024-12609-8.pdf Available under License Creative Commons Attribution. Descargar (1MB) |
Resumen
Leukemia is a type of blood cell cancer that is in the bone marrow’s blood-forming cells. Two types of Leukemia are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lymphocytic and myeloid leukemias. This work evaluates a unique deep convolutional neural network (CNN) classifier that improves identification precision by carefully examining concatenated peptide patterns. The study uses leukemia protein expression for experiments supporting two different techniques including independence and applied cross-validation. In addition to CNN, multilayer perceptron (MLP), gated recurrent unit (GRU), and recurrent neural network (RNN) are applied. The experimental results show that the CNN model surpasses competitors with its outstanding predictability in independent and cross-validation testing applied on different features extracted from protein expressions such as amino acid composition (AAC) with a group of AAC (GAAC), tripeptide composition (TPC) with a group of TPC (GTPC), and dipeptide composition (DPC) for calculating its accuracies with their receiver operating characteristic (ROC) curve. In independence testing, a feature expression of AAC and a group of GAAC are applied using MLP and CNN modules, and ROC curves are achieved with overall 100% accuracy for the detection of protein patterns. In cross-validation testing, a feature expression on a group of AAC and GAAC patterns achieved 98.33% accuracy which is the highest for the CNN module. Furthermore, ROC curves show a 0.965% extraordinary result for the GRU module. The findings show that the CNN model is excellent at figuring out leukemia illnesses from protein expressions with higher accuracy.
| Tipo de Documento: | Artículo |
|---|---|
| Palabras Clave: | Leukemia detection; Protein sequences; Deep learning; Convolutional neural network |
| Clasificación temática: | Materias > Biomedicina Materias > Ingeniería |
| Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica |
| Depositado: | 23 Sep 2024 23:30 |
| Ultima Modificación: | 21 Oct 2024 23:30 |
| URI: | https://repositorio.uniromana.edu.do/id/eprint/14342 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/26722/1/nutrients-18-00257.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/26722/1.hassmallThumbnailVersion/nutrients-18-00257.pdf" border="0"/></a>
en
open
Background/Objectives: The growing integration of Artificial Intelligence (AI) and chatbots in health professional education offers innovative methods to enhance learning and clinical preparedness. This study aimed to evaluate the educational impact and perceptions in university students of Human Nutrition and Dietetics, regarding the utility, usability, and design of the E+DIEting_Lab chatbot platform when implemented in clinical nutrition training. Methods: The platform was piloted from December 2023 to April 2025 involving 475 students from multiple European universities. While all 475 students completed the initial survey, 305 finished the follow-up evaluation, representing a 36% attrition rate. Participants completed surveys before and after interacting with the chatbots, assessing prior experience, knowledge, skills, and attitudes. Data were analyzed using descriptive statistics and independent samples t-tests to compare pre- and post-intervention perceptions. Results: A total of 475 university students completed the initial survey and 305 the final evaluation. Most university students were females (75.4%), with representation from six languages and diverse institutions. Students reported clear perceived learning gains: 79.7% reported updated practical skills in clinical dietetics and communication were updated, 90% felt that new digital tools improved classroom practice, and 73.9% reported enhanced interpersonal skills. Self-rated competence in using chatbots as learning tools increased significantly, with mean knowledge scores rising from 2.32 to 2.66 and skills from 2.39 to 2.79 on a 0–5 Likert scale (p < 0.001 for both). Perceived effectiveness and usefulness of chatbots as self-learning tools remained positive but showed a small decline after use (effectiveness from 3.63 to 3.42; usefulness from 3.63 to 3.45), suggesting that hands-on experience refined, but did not diminish, students’ overall favorable views of the platform. Conclusions: The implementation and pilot evaluation of the E+DIEting_Lab self-learning virtual patient chatbot platform demonstrate that structured digital simulation tools can significantly improve perceived clinical nutrition competences. These findings support chatbot adoption in dietetics curricula and inform future digital education innovations.
Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Arturo Ortega-Mansilla mail arturo.ortega@uneatlantico.es, Thomas Prola mail thomas.prola@uneatlantico.es, Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es,
Elío Pascual
<a class="ep_document_link" href="/26964/1/s44196-025-01123-9_reference.pdf"><img class="ep_doc_icon" alt="[img]" src="/26964/1.hassmallThumbnailVersion/s44196-025-01123-9_reference.pdf" border="0"/></a>
en
open
Suicide Ideation Detection Using Social Media Data and Ensemble Machine Learning Model
Identifying the emotional state of individuals has useful applications, particularly to reduce the risk of suicide. Users’ thoughts on social media platforms can be used to find cues on the emotional state of individuals. Clinical approaches to suicide ideation detection primarily rely on evaluation by psychologists, medical experts, etc., which is time-consuming and requires medical expertise. Machine learning approaches have shown potential in automating suicide detection. In this regard, this study presents a soft voting ensemble model (SVEM) by leveraging random forest, logistic regression, and stochastic gradient descent classifiers using soft voting. In addition, for the robust training of SVEM, a hybrid feature engineering approach is proposed that combines term frequency-inverse document frequency and the bag of words. For experimental evaluation, “Suicide Watch” and “Depression” subreddits on the Reddit platform are used. Results indicate that the proposed SVEM model achieves an accuracy of 94%, better than existing approaches. The model also shows robust performance concerning precision, recall, and F1, each with a 0.93 score. ERT and deep learning models are also used, and performance comparison with these models indicates better performance of the SVEM model. Gated recurrent unit, long short-term memory, and recurrent neural network have an accuracy of 92% while the convolutional neural network obtains an accuracy of 91%. SVEM’s computational complexity is also low compared to deep learning models. Further, this study highlights the importance of explainability in healthcare applications such as suicidal ideation detection, where the use of LIME provides valuable insights into the contribution of different features. In addition, k-fold cross-validation further validates the performance of the proposed approach.
Erol KINA mail , Jin-Ghoo Choi mail , Abid Ishaq mail , Rahman Shafique mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Isabel de la Torre Diez mail , Imran Ashraf mail ,
KINA
<a href="/26965/1/s40203-025-00539-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/26965/1.hassmallThumbnailVersion/s40203-025-00539-7.pdf" border="0"/></a>
en
open
Human metapneumovirus (hMPV) is one of the potential pandemic pathogens, and it is a concern for elderly subjects and immunocompromised patients. There is no vaccine or specific antiviral available for hMPV. We conducted an in-silico study to predict initial antiviral candidates against human metapneumovirus. Our methodology included protein modeling, stability assessment, molecular docking, molecular simulation, analysis of non-covalent interactions, bioavailability, carcinogenicity, and pharmacokinetic profiling. We pinpointed four plant-derived bio-compounds as antiviral candidates. Among the compounds, apigenin showed the highest binding affinity, with values of − 8.0 kcal/mol for the hMPV-F protein and − 7.6 kcal/mol for the hMPV-N protein. Molecular dynamic simulations and further analyses confirmed that the protein-ligand docked complexes exhibited acceptable stability compared to two standard antiviral drugs. Additionally, these four compounds yielded satisfactory outcomes in bioavailability, drug-likeness, and ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) and STopTox analyses. This study highlights the potential of apigenin and xanthoangelol E as an initial antiviral candidate, underscoring the necessity for wet-lab evaluation, preclinical and clinical trials against human metapneumovirus infection.
Hasan Huzayfa Rahaman mail , Afsana Khan mail , Nadim Sharif mail , Wasifuddin Ahmed mail , Nazmul Sharif mail , Rista Majumder mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Rahaman
<a href="/26914/1/nutrients-18-00387.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/26914/1.hassmallThumbnailVersion/nutrients-18-00387.pdf" border="0"/></a>
en
open
Loneliness, Aloneness, and Adherence to the Mediterranean Diet in Southern Italian Individuals
Background/Objectives: Research across multiple disciplines has explored how nutrition is shaped by social isolation and feelings of loneliness, especially in the elderly population. Evidence from neuroscience highlights that loneliness may alter eating patterns, encouraging emotional eating or other compensatory food behaviors. Conversely, isolation from social contexts is often linked to a reduced variety of nutrient intake. This study set out to examine how psychosocial aspects, particularly social connectedness and feeling alone, relate to adherence to the Mediterranean diet among older adults residing in Sicily, southern Italy. Methods: Dietary habits of 883 adults were collected through food frequency questionnaires and assessed for adherence to the Mediterranean diet. Loneliness was measured through a targeted question from a standardized tool designed to capture depressive symptoms. Direct questions asked whether participants were engaged in social networks, such as family, friends and neighborhoods, or religious communities, in order to assess objective aloneness. Logistic regression analyses were performed to assess associations between variables of interest. Results: After accounting for potential confounders, both loneliness and aloneness showed an association with stronger adherence to the Mediterranean diet. Specifically, individuals experiencing loneliness and aloneness were less likely to have high adherence to the Mediterranean diet (OR = 0.28, 95% CI: 0.15, 0.51, and OR = 0.26, 95% CI: 0.12, 0.54, respectively). Conclusions: These findings underscore the importance of fostering social engagement among older populations, who may particularly benefit from maintaining active social ties to support healthier eating behaviors.
Justyna Godos mail , Giuseppe Caruso mail , Marco Antonio Olvera-Moreira mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Melannie Toral-Noristz mail , Raynier Zambrano-Villacres mail , Alice Leonardi mail , Rosa M. G. Balzano mail , Fabio Galvano mail , Sabrina Castellano mail , Giuseppe Grosso mail ,
Godos
<a class="ep_document_link" href="/26848/1/nutrients-17-03853.pdf"><img class="ep_doc_icon" alt="[img]" src="/26848/1.hassmallThumbnailVersion/nutrients-17-03853.pdf" border="0"/></a>
en
open
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease driven by persistent inflammation and oxidative stress. Ilex paraguariensis (yerba mate) contains bioactive compounds—particularly chlorogenic acids, quercetin, and rutin—with documented antioxidant and anti-inflammatory properties. Objectives: To systematically review the mechanistic and clinical evidence on Ilex paraguariensis and its main constituents in RA-relevant inflammatory, oxidative, and bone metabolic pathways. Methods: Following PRISMA 2020, PubMed/MEDLINE, LILACS, and SciELO were searched up to September 2025. Eligible studies included yerba mate preparations (last 10 years) or isolated compounds (last 5 years) assessing RA-relevant clinical, inflammatory, oxidative, or bone metabolic outcomes. Non-original studies were excluded. Owing to heterogeneity, findings were narratively synthesized, and risk of bias was evaluated using RoB 2, ROBINS-I, OHAT, and SYRCLE. Results: Twenty-three studies met inclusion criteria: 11 human (clinical or observational), 7 human-based in vitro, and 5 animal studies. Interventions with yerba mate infusions or standardized extracts suggest reductions in inflammatory markers (e.g., C-reactive protein, interleukin-6) and indicate improvements in glutathione-related oxidative balance. Evidence from isolated compounds, particularly quercetin and rutin, suggests comparable anti-inflammatory and antioxidant effects. Preclinical studies appear to indicate modulation of inflammatory and redox pathways relevant to RA. Conclusions: Yerba mate and its constituents show preliminary indications of anti-inflammatory and antioxidant effects with potential relevance to RA pathophysiology. However, in the absence of clinical trials in RA patients, conclusions remain tentative, constrained by small sample sizes, methodological heterogeneity, species differences, and internal validity concerns. Future research should include rigorously designed randomized trials and mechanistic studies using advanced human-relevant platforms, such as organoids and organ-on-chip systems.
Manuela Cassotta mail manucassotta@gmail.com, Qingwei Cao mail , Haixia Hu mail , Carlos Rabeiro Martinez mail , Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,
Cassotta
