Producción científica y docente

Producción científica reciente

<a class="ep_document_link" href="/17061/1/fspor-1-1565900.pdf"><img class="ep_doc_icon" alt="[img]" src="/17061/1.hassmallThumbnailVersion/fspor-1-1565900.pdf" border="0"/></a>

en

open

Tensiomyography, functional movement screen and counter movement jump for the assessment of injury risk in sport: a systematic review of original studies of diagnostic tests

Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.

Producción Científica

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,

Velarde-Sotres

<a href="/17139/1/s41598-025-89266-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17139/1.hassmallThumbnailVersion/s41598-025-89266-9.pdf" border="0"/></a>

en

open

Harnessing AI forward and backward chaining with telemetry data for enhanced diagnostics and prognostics of smart devices

In the rapidly evolving landscape of artificial intelligence (AI) and the Internet of Things (IoT), the significance of device diagnostics and prognostics is paramount for guaranteeing the dependable operation and upkeep of intricate systems. The capacity to precisely diagnose and preemptively predict potential failures holds the potential to considerably amplify maintenance efficiency, diminish downtime, and optimize resource allocation. The wealth of information offered by telemetry data gathered from IoT devices presents an opportunity for diagnostics and prognostics applications. However, extracting valuable insights and making well-timed decisions from this extensive data reservoir remains a formidable challenge. This study proposes a novel AI-driven framework that integrates forward chaining and backward chaining algorithms to analyze telemetry data from IoT devices. The proposed methodology utilizes rule-based inference to detect real-time anomalies and predict potential future failures, providing a dual-layered approach for diagnostics and prognostics. The results show that the diagnostics engine using forward chaining detects real-time issues like “High Temperature” and “Low Pressure,” while the prognostics engine with backward chaining predicts potential future occurrences of these issues, enabling proactive prevention measures. The experimental results demonstrate that adopting this approach could offer valuable assistance to authorities and stakeholders. Accurate early diagnosis and prediction of potential failures have the capability to greatly improve maintenance efficiency, minimize downtime, and optimize cost.

Producción Científica

Muhammad Shoaib Farooq mail , Rizwan Pervez Mir mail , Atif Alvi mail , Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Fadwa Alrowais mail , Hanen Karamti mail , Imran Ashraf mail ,

Farooq

<a href="/17140/1/s41598-025-90616-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17140/1.hassmallThumbnailVersion/s41598-025-90616-w.pdf" border="0"/></a>

en

open

Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization

The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance.

Producción Científica

Khadija Kanwal mail , Khawaja Tehseen Ahmad mail , Aiza Shabir mail , Li Jing mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,

Kanwal

<a class="ep_document_link" href="/17272/1/s41598-025-88676-z.pdf"><img class="ep_doc_icon" alt="[img]" src="/17272/1.hassmallThumbnailVersion/s41598-025-88676-z.pdf" border="0"/></a>

en

open

Incorporating soil information with machine learning for crop recommendation to improve agricultural output

The agriculture field is the basis of a country’s change and financial system. Crops are the main source of revenue for the people. One of the farmer’s most challenging problems is choosing the right crops for their land. This critical decision has a direct impact on productivity and profit. Wrong crop selection not only reduces yields but also causes food shortages, creating more problems for farmers. The best crop depends on many parameters such as illustration humidity, N, K, P, pH, rainfall, and temperature of the soil. Getting advice from experts is not an easy task. This requires intelligent models in crop recommendations that use machine-learning models to suggest suitable crops for soil and other environmental conditions. Temperature, humidity, and pH are important data for growing crops in agriculture. In this study, we gather and preprocess relevant data. To recommend the most suitable crop, we propose a novel ensemble learning approach called RFXG based on random forest (RF) and extreme gradient boosting (XGB) to suggest the best crop out of the twenty-two major crops. To measure the capability of the proposed approach, various machine learning models are utilized including extra tree classifier, multilayer perceptron, RF, decision trees, logistic regression, and XGB classifiers. To get the best performance, optimization of hyperparameter, and K-fold cross-validation procedures are performed. Experimental outcomes show that the proposed RFXG technique achieves a recommendation accuracy is 98%. Specifically, the proposed solution provides immediate recommendations to help farmers make timely decisions.

Producción Científica

Hadeeqa Afzal mail , Madiha Amjad mail , Ali Raza mail , Kashif Munir mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Imran Ashraf mail ,

Afzal

<a class="ep_document_link" href="/17392/1/journal.pone.0317863.pdf"><img class="ep_doc_icon" alt="[img]" src="/17392/1.hassmallThumbnailVersion/journal.pone.0317863.pdf" border="0"/></a>

en

open

Deep image features sensing with multilevel fusion for complex convolution neural networks & cross domain benchmarks

Efficient image retrieval from a variety of datasets is crucial in today's digital world. Visual properties are represented using primitive image signatures in Content Based Image Retrieval (CBIR). Feature vectors are employed to classify images into predefined categories. This research presents a unique feature identification technique based on suppression to locate interest points by computing productive sum of pixel derivatives by computing the differentials for corner scores. Scale space interpolation is applied to define interest points by combining color features from spatially ordered L2 normalized coefficients with shape and object information. Object based feature vectors are formed using high variance coefficients to reduce the complexity and are converted into bag-of-visual-words (BoVW) for effective retrieval and ranking. The presented method encompass feature vectors for information synthesis and improves the discriminating strength of the retrieval system by extracting deep image features including primitive, spatial, and overlayed using multilayer fusion of Convolutional Neural Networks(CNNs). Extensive experimentation is performed on standard image datasets benchmarks, including ALOT, Cifar-10, Corel-10k, Tropical Fruits, and Zubud. These datasets cover wide range of categories including shape, color, texture, spatial, and complicated objects. Experimental results demonstrate considerable improvements in precision and recall rates, average retrieval precision and recall, and mean average precision and recall rates across various image semantic groups within versatile datasets. The integration of traditional feature extraction methods fusion with multilevel CNN advances image sensing and retrieval systems, promising more accurate and efficient image retrieval solutions.

Producción Científica

Jyotismita Chaki mail , Aiza Shabir mail , Khawaja Tehseen Ahmed mail , Arif Mahmood mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Chaki