Browse by Acceso
![]() | Up a level |
2024
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Cerrado
Inglés
The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions. It is challenging to accurately diagnose diseases, and many methods are proposed to help radiologists, both traditional and deep learning-based. Automatic report generation is widely used to tackle this issue as it streamlines the process and lessens the burden of manual labeling of images. This paper introduces a systematic literature review with a focus on analyses and evaluating existing research on medical report generation. This SLR follows a proper protocol for the planning, reviewing, and reporting of the results. This review recognizes that the most commonly used deep learning models are encoder-decoder frameworks (45 articles), which provide an accuracy of around 92–95%. Transformers-based models (20 articles) are the second most established method and achieve an accuracy of around 91%. The remaining articles explored in this SLR are attention mechanisms (10), RNN-LSTM (10), Large language models (LLM-10), and graph-based methods (4) with promising results. However, these methods also face certain limitations such as overfitting, risk of bias, and high data dependency that impact their performance. The review not only highlights the strengths and challenges of these methods but also suggests ways to handle them in the future to increase the accuracy and timely generation of medical reports. The goal of this review is to direct radiologists toward methods that lessen their workload and provide precise medical diagnoses.
metadata
Rehman, Marwareed and Shafi, Imran and Ahmad, Jamil and Osorio García, Carlos Manuel and Pascual Barrera, Alina Eugenia and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carlos.osorio@uneatlantico.es, alina.pascual@unini.edu.mx, UNSPECIFIED
(2024)
Advancement in medical report generation: current practices, challenges, and future directions.
Medical & Biological Engineering & Computing.
ISSN 0140-0118
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
University of La Romana > Research > Scientific Production
Cerrado
Inglés
Leukemia is a type of blood cell cancer that is in the bone marrow’s blood-forming cells. Two types of Leukemia are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lymphocytic and myeloid leukemias. This work evaluates a unique deep convolutional neural network (CNN) classifier that improves identification precision by carefully examining concatenated peptide patterns. The study uses leukemia protein expression for experiments supporting two different techniques including independence and applied cross-validation. In addition to CNN, multilayer perceptron (MLP), gated recurrent unit (GRU), and recurrent neural network (RNN) are applied. The experimental results show that the CNN model surpasses competitors with its outstanding predictability in independent and cross-validation testing applied on different features extracted from protein expressions such as amino acid composition (AAC) with a group of AAC (GAAC), tripeptide composition (TPC) with a group of TPC (GTPC), and dipeptide composition (DPC) for calculating its accuracies with their receiver operating characteristic (ROC) curve. In independence testing, a feature expression of AAC and a group of GAAC are applied using MLP and CNN modules, and ROC curves are achieved with overall 100% accuracy for the detection of protein patterns. In cross-validation testing, a feature expression on a group of AAC and GAAC patterns achieved 98.33% accuracy which is the highest for the CNN module. Furthermore, ROC curves show a 0.965% extraordinary result for the GRU module. The findings show that the CNN model is excellent at figuring out leukemia illnesses from protein expressions with higher accuracy.
metadata
Khawaja, Seher Ansar and Farooq, Muhammad Shoaib and Ishaq, Kashif and Alsubaie, Najah and Karamti, Hanen and Caro Montero, Elizabeth and Silva Alvarado, Eduardo René and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, UNSPECIFIED
(2024)
Prediction of leukemia peptides using convolutional neural network and protein compositions.
BMC Cancer, 24 (1).
ISSN 1471-2407
2023
Other
Subjects > Social Sciences
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado
Inglés, Español
A partir de los datos introducidos y de diferentes escenarios, la herramienta del simulador digital genera distintos retos a los estudiantes-emprendedores para poner a prueba y evaluar la parte financiera de una propuesta de emprendimiento y también ofrece recomendaciones en función de la aportación real de diferentes agentes financieros como bancos, inversores privados, business angels o plataformas de financiación colaborativa.
metadata
UNSPECIFIED
mail
UNSPECIFIED
(2023)
Digital Simulator for Entrepreneurial Finance (FINANCEn_LAB).
Repositorio de la Universidad.
2019
Other
Subjects > Engineering
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado
Español
El ahogamiento es una de las principales causas de muerte en el mundo, alrededor de 372.000 personas al año, siendo una cifra que se considera subestimada (OMS, 2014). En consecuencia, existe la necesidad de mejorar esta situación considerada de salud pública.
El objetivo del proyecto SOSeas es el desarrollo de una herramienta de evaluación para predecir el riesgo dinámico de los ahogamientos en las playas. En los espacios acuáticos recreativos se espera que una herramienta informática pueda mejorar la gestión de la seguridad por parte de los socorristas y también la información de riesgo de ahogamiento para los bañistas.
Este proyecto es una continuidad del trabajo realizado en PreventSOS. En aquel caso el foco era el desarrollo de un sistema experto para la identificación, análisis y gestión del riesgo en espacios acuáticos y el diseño de una aplicación web para el registro de incidentes y accidentes. SOSeas pretende mejorar el servicio anterior integrando el sistema de información que provee el Copernicus Marine Environment Monitoring Service (CMEMS) en todo el mundo. Se pretende conseguir suficientes datos para poder nutrir a un sistema basado en técnicas de aprendizaje-máquina. La herramienta SOSeas se desarrolla para dos tipos de usuarios : gestores de playas/socorristas y usuarios recreativos (nadadores, navegantes, surfistas...). Estos usuarios podrán acceder a las condiciones meteorológicas y oceanográficas así como a información a medida sobre las amenazas de estos entornos siempre cambiantes.
metadata
UNSPECIFIED
mail
UNSPECIFIED
(2019)
SOSeas: An assessment tool for predicting the dynamic risk of drowning on beaches.
Repositorio de la Universidad.
(Unpublished)
2016
Other
Subjects > Engineering
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado
Español
Como resultado del proyecto “Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva” se ha generado una herramienta digital que permite llevar el control de las lesiones de cada deportista, así como sus constantes biomecánicas, hábitos de alimentación y estado de salud emocional de tal forma que, se cuenta con información que combina varios factores a un nivel de detalle importante y de modo personalizado para cada jugador. De este modo, se obtienen los inputs para generar el análisis estadístico que alerta sobre las probabilidades de sufrir determinada lesión.
Objetivo del Proyecto:
Desarrollar una herramienta que permita identificar el riesgo de lesión de un deportista, independientemente del nivel o categoría del mismo, y poder actuar en consecuencia de manera individualizada, según el período de la temporada en el que se encuentre.
Financiación:
Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región.
Inicio:
15/12/2016
Fin:
14/12/2018
Código Externo:
ID16-IN-022
metadata
UNSPECIFIED
mail
UNSPECIFIED
(2016)
Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva. R&P (Recovery and Performance).
Repositorio de la Universidad.
(Unpublished)
Other
Subjects > Engineering
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado
Español
El proyecto se centra en el desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. A partir del conocimiento que se pretende generar, la entidad espera comercializar servicios de soporte para la gestión de riesgos, la acción preventiva y comunicación de emergencias.
La propuesta se orienta a crear un sistema experto en la gestión de riesgos en espacios acuáticos naturales (playas), basado por un lado en una aplicación para la evaluación de riesgos, y por otro, en un sistema de registro y análisis de sucesos y accidentes.
Esta herramienta debe permitir a los responsables de la gestión de la seguridad en zonas de baño una gestión adecuada y eficaz de los recursos preventivos para minimizar la probabilidad y severidad de riesgos que puedan afectar a la integridad física o a la salud de las personas, y en consecuencia, el aumento de la seguridad acuática en las costas.
Objetivo del Proyecto:
Desarrollar tecnologías para la identificación de riesgos en espacios acuáticos naturales con el objeto de prevenir ahogamientos y otros incidentes en zonas de playa.
Financiación:
Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región.
Inicio:
09/12/2016
Fin:
08/12/2018
Código Externo:
ID16-IN-038
metadata
UNSPECIFIED
mail
UNSPECIFIED
(2016)
PREVENT-SOS: Desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales.
Repositorio de la Universidad.
(Unpublished)
Other
Subjects > Engineering
Subjects > Teaching
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado
Español
A pesar del gran incremento de la práctica deportiva en la sociedad occidental en los últimos años, aún hay, según fuentes de la UE, aproximadamente un 50% de la población europea que no hace ejercicio regularmente, lo que está generando un grave problema de salud, especialmente preocupante en la población infantil y juvenil. Del 50% de la población que hace deporte de forma regular, un porcentaje muy alto lo hace solo, en casa o en lugares abiertos públicos sin ninguna supervisión o control por parte de personal especializado, lo que conlleva un cierto riesgo de sufrir lesiones y/o patologías de diferente pronósticos. Ante esta situación compleja de tener la necesidad de promover la actividad física pero intentando aminorar el riesgo de la propia práctica, se propone el desarrollo de una aplicación móvil “freemium” que fomente el ejercicio y que integre una serie de tecnologías innovadoras para incorporar inteligencia artificial que aplicará sobre unos elementos de alerta que puedan generar avisos y geolocalizar al practicante de una forma rápida y eficaz. Entendemos que el desarrollo de este tipo de negocios de carácter tecnológico y de alto grado de responsabilidad social hacia la ciudadanía incrementará el tejido empresarial de Cantabria y generará nuevos puestos de trabajo estables y de alto nivel de formación. Las sinergias que se proponen con instituciones universitarias y de investigación fomentarán los ecosistemas profesionales relacionados con las nuevas tecnologías de la información, la salud y la seguridad. El objetivo de este sistema complejo que se propone es promover la actividad física segura de forma global.
metadata
UNSPECIFIED
mail
UNSPECIFIED
(2016)
SMART ACTIVE LIFE: Desarrollo de tecnologías inteligentes para la promoción de la vida activa y segura.
Repositorio de la Universidad.
(Unpublished)
<a href="/17788/1/s40537-025-01167-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17788/1.hassmallThumbnailVersion/s40537-025-01167-w.pdf" border="0"/></a>
en
open
Detecting hate in diversity: a survey of multilingual code-mixed image and video analysis
The proliferation of damaging content on social media in today’s digital environment has increased the need for efficient hate speech identification systems. A thorough examination of hate speech detection methods in a variety of settings, such as code-mixed, multilingual, visual, audio, and textual scenarios, is presented in this paper. Unlike previous research focusing on single modalities, our study thoroughly examines hate speech identification across multiple forms. We classify the numerous types of hate speech, showing how it appears on different platforms and emphasizing the unique difficulties in multi-modal and multilingual settings. We fill research gaps by assessing a variety of methods, including deep learning, machine learning, and natural language processing, especially for complicated data like code-mixed and cross-lingual text. Additionally, we offer key technique comparisons, suggesting future research avenues that prioritize multi-modal analysis and ethical data handling, while acknowledging its benefits and drawbacks. This study attempts to promote scholarly research and real-world applications on social media platforms by acting as an essential resource for improving hate speech identification across various data sources.
Hafiz Muhammad Raza Ur Rehman mail , Mahpara Saleem mail , Muhammad Zeeshan Jhandir mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Helena Garay mail helena.garay@uneatlantico.es, Imran Ashraf mail ,
Raza Ur Rehman
<a href="/17573/1/s41598-025-96332-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17573/1.hassmallThumbnailVersion/s41598-025-96332-9.pdf" border="0"/></a>
en
open
Novel hybrid transfer neural network for wheat crop growth stages recognition using field images
Wheat is one of the world’s most widely cultivated cereal crops and is a primary food source for a significant portion of the population. Wheat goes through several distinct developmental phases, and accurately identifying these stages is essential for precision farming. Determining wheat growth stages accurately is crucial for increasing the efficiency of agricultural yield in wheat farming. Preliminary research identified obstacles in distinguishing between these stages, negatively impacting crop yields. To address this, this study introduces an innovative approach, MobDenNet, based on data collection and real-time wheat crop stage recognition. The data collection utilized a diverse image dataset covering seven growth phases ‘Crown Root’, ‘Tillering’, ‘Mid Vegetative’, ‘Booting’, ‘Heading’, ‘Anthesis’, and ‘Milking’, comprising 4496 images. The collected image dataset underwent rigorous preprocessing and advanced data augmentation to refine and minimize biases. This study employed deep and transfer learning models, including MobileNetV2, DenseNet-121, NASNet-Large, InceptionV3, and a convolutional neural network (CNN) for performance comparison. Experimental evaluations demonstrated that the transfer model MobileNetV2 achieved 95% accuracy, DenseNet-121 achieved 94% accuracy, NASNet-Large achieved 76% accuracy, InceptionV3 achieved 74% accuracy, and the CNN achieved 68% accuracy. The proposed novel hybrid approach, MobDenNet, that synergistically merges the architectures of MobileNetV2 and DenseNet-121 neural networks, yields highly accurate results with precision, recall, and an F1 score of 99%. We validated the robustness of the proposed approach using the k-fold cross-validation. The proposed research ensures the detection of growth stages with great promise for boosting agricultural productivity and management practices, empowering farmers to optimize resource distribution and make informed decisions.
Aisha Naseer mail , Madiha Amjad mail , Ali Raza mail , Kashif Munir mail , Aseel Smerat mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Imran Ashraf mail ,
Naseer
<a href="/17593/1/s41598-025-95448-2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/17593/1.hassmallThumbnailVersion/s41598-025-95448-2.pdf" border="0"/></a>
en
open
Client engagement solution for post implementation issues in software industry using blockchain
In the rapidly advanced and evolving information technology industry, adequate client engagement plays a critical role as it is very important to understand the client’s concerns, and requirements, have the records, authorizations, and go-ahead of previously agreed requirements, and provide the feasible solution accordingly. Previously multiple solutions have been proposed to enhance the efficiency of client engagement, but they lack traceability, trust, transparency, and conflict in agreements of previous contracts. Due to the lack of these shortcomings, the client requirement is getting delayed which is causing client escalations, integrity issues, project failure, and penalties. In this study, we proposed the UniferCollab framework to overcome the issues of collaboration between various teams, transparency, the record of client authorizations, and the go-ahead on previous developments by implementing blockchain technology. We store the data on the permissible network in the proposed approach. It allows us to compile all the requirements and information shared by clients on permissible blockchain to secure a large amount of data which enhances the traceability of all the requirements. All the authorizations from the client generate push notifications for any changes in their current system executed through smart contracts. It removes the ambiguity between various development teams if the client has only shared the requirement with one team. The data is stored in the decentralized network from where information is gathered which resolves the traceability, transparency, and trust issues. Lastly, evaluations involved a total of 800 hypertext transfer protocol (HTTP) requests tested using Postman with blockchain block sizes ranging from 0.568 KB to 550 KB and an average size increase of 280 KB was observed as new blocks were added. The longest chain in the network was observed during 800 repetitions of blockchain operations. Latency analysis revealed that delays in processing HTTP requests were influenced by decentralized node processing, local machine response times, and internet bandwidth through various experiments. Results show that the proposed framework resolves all client engagement issues in implementation between all stakeholders which enhances trust, and transparency improves client experience and helps us manage disputes effectively.
Muhammad Shoaib Farooq mail , Khurram Irshad mail , Danish Riaz mail , Nagwan Abdel Samee mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Imran Ashraf mail ,
Farooq
<a class="ep_document_link" href="/17792/1/s41598-025-97561-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/17792/1.hassmallThumbnailVersion/s41598-025-97561-8.pdf" border="0"/></a>
en
open
Ensemble stacked model for enhanced identification of sentiments from IMDB reviews
The emergence of social media platforms led to the sharing of ideas, thoughts, events, and reviews. The shared views and comments contain people’s sentiments and analysis of these sentiments has emerged as one of the most popular fields of study. Sentiment analysis in the Urdu language is an important research problem similar to other languages, however, it is not investigated very well. On social media platforms like X (Twitter), billions of native Urdu speakers use the Urdu script which makes sentiment analysis in the Urdu language important. In this regard, an ensemble model RRLS is proposed that stacks random forest, recurrent neural network, logistic regression (LR), and support vector machine (SVM). The Internet Movie Database (IMDB) movie reviews and Urdu tweets are examined in this study using Urdu sentiment analysis. The Urdu hack library was used to preprocess the Urdu data, which includes preprocessing operations including normalizing individual letters, merging them, including spaces, etc. concerning punctuation. The problem of accurately encoding Urdu characters and replacing Arabic letters with their Urdu equivalents is fixed by the normalization module. Several models are adopted in this study for extensive evaluation of their accuracy for Urdu sentiment analysis. While the results promising, among machine learning models, the SVM and LR attained an accuracy of 87%, according to performance criteria such as F-measure, accuracy, recall, and precision. The accuracy of the long short-term memory (LSTM) and bidirectional LSTM (BiLSTM) was 84%. The suggested ensemble RRLS model performs better than other learning algorithms and achieves a 90% accuracy rate, outperforming current methods. The use of the synthetic minority oversampling technique (SMOTE) is observed to improve the performance and lead to 92.77% accuracy.
Komal Azim mail , Alishba Tahir mail , Mobeen Shahroz mail , Hanen Karamti mail , Annia A. Vázquez mail annia.almeyda@uneatlantico.es, Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Imran Ashraf mail ,
Azim
<a class="ep_document_link" href="/17061/1/fspor-1-1565900.pdf"><img class="ep_doc_icon" alt="[img]" src="/17061/1.hassmallThumbnailVersion/fspor-1-1565900.pdf" border="0"/></a>
en
open
Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.
Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,
Velarde-Sotres