Documentos donde el Tema es "Materias > Ingeniería"

Subir un nivel
Exportar como [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Agrupar por: Fecha | Título | Autores | Tipo de Documento
Ir a: Artículo
Número de registros en este nivel: 20.

Artículo

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés The provision of Wireless Fidelity (Wi-Fi) service in an indoor environment is a crucial task and the decay in signal strength issues arises especially in indoor environments. The Line-of-Sight (LOS) is a path for signal propagation that commonly impedes innumerable indoor objects damage signals and also causes signal fading. In addition, the Signal decay (signal penetration), signal reflection, and long transmission distance between transceivers are the key concerns. The signals lose their power due to the existence of obstacles (path of signals) and hence destroy received signal strength (RSS) between different communicating nodes and ultimately cause loss of the packet. Thus, to solve this issue, herein we propose an advanced model to maximize the LOS in communicating nodes using a modern indoor environment. Our proposal comprised various components for instance signal enhancers, repeaters, reflectors,. these components are connected. The signal attenuation and calculation model comprises of power algorithm and hence it can quickly and efficiently find the walls and corridors as obstacles in an indoor environment. We compared our proposed model with state of the art model using Received Signal Strength (RSS) and Packet Delivery Ratio (PDR) (different scenario) and found that our proposed model is efficient. Our proposed model achieved high network throughput as compared to the state-of-the-art models. metadata Khan, Muhammad Nasir; Waqas, Muhammad; Abbas, Qamar; Qureshi, Ahsan; Amin, Farhan; de la Torre Díez, Isabel; Uc Ríos, Carlos Eduardo y Fabian Gongora, Henry mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, carlos.uc@unini.edu.mx, henry.gongora@uneatlantico.es (2024) Advanced Line-of-Sight (LOS) model for communicating devices in modern indoor environment. PLOS ONE, 19 (7). e0305039. ISSN 1932-6203

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Behavioral economics and artificial intelligence (AI) have been two rapidly growing fields of research over the past few years. While behavioral economics aims to combine concepts from psychology, sociology, and neuroscience with classical economic thoughts to understand human decision-making processes in the complex economic environment, AI on the other hand, focuses on creating intelligent machines that can mimic human cognitive abilities such as learning, problem-solving, decision-making, and language understanding. The intersection of these two fields has led to thrilling research theories and practical applications. This study provides a bibliometric analysis of the literature on AI and behavioral economics to gain insight into research trends in this field. We conducted this bibliometric analysis using the Web of Science database on articles published between 2012 and 2022 that were related to AI and behavioral economics. VOSviewer and Bibliometrix R package were utilized to identify influential authors, journals, institutions, and countries in the field. Network analysis was also performed to identify the main research themes and their interrelationships. The analysis revealed that the number of publications on AI and behavioral economics has been increasing steadily over the past decade. We found that most studies focused on customer and consumer behavior, including topics such as decision-making under uncertainty, neuroeconomics, and behavioral game theory, combined mainly with machine learning and deep learning techniques. We also identified several emerging themes, including the use of AI in nudging and prospect theory in behavioral finance, as well as undeveloped themes such as AI-driven behavioral macroeconomics. The findings suggests that there is a need for more interdisciplinary collaboration between researchers in behavioral economics and AI. We also suggest that future research on AI and behavioral economics further consider the ethical implications of using AI and behavioral insights in decision-making. This study can serve as a valuable resource for researchers interested in AI and behavioral economics. metadata Aoujil, Zakaria; Hanine, Mohamed; Soriano Flores, Emmanuel; Samad, Md Abdu y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2023) Artificial Intelligence and Behavioral Economics: A Bibliographic Analysis of Research Field. IEEE Access. p. 1. ISSN 2169-3536 (En Prensa)

Artículo Materias > Biomedicina
Materias > Ciencias Sociales
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Aim: The development of predictive models for patients treated by emergency medical services (EMS) is on the rise in the emergency field. However, how these models evolve over time has not been studied. The objective of the present work is to compare the characteristics of patients who present mortality in the short, medium and long term, and to derive and validate a predictive model for each mortality time. Methods: A prospective multicenter study was conducted, which included adult patients with unselected acute illness who were treated by EMS. The primary outcome was noncumulative mortality from all causes by time windows including 30-day mortality, 31- to 180-day mortality, and 181- to 365-day mortality. Prehospital predictors included demographic variables, standard vital signs, prehospital laboratory tests, and comorbidities. Results: A total of 4830 patients were enrolled. The noncumulative mortalities at 30, 180, and 365 days were 10.8%, 6.6%, and 3.5%, respectively. The best predictive value was shown for 30-day mortality (AUC = 0.930; 95% CI: 0.919–0.940), followed by 180-day (AUC = 0.852; 95% CI: 0.832–0.871) and 365-day (AUC = 0.806; 95% CI: 0.778–0.833) mortality. Discussion: Rapid characterization of patients at risk of short-, medium-, or long-term mortality could help EMS to improve the treatment of patients suffering from acute illnesses. metadata Enriquez de Salamanca Gambara, Rodrigo; Sanz-García, Ancor; del Pozo Vegas, Carlos; López-Izquierdo, Raúl; Sánchez Soberón, Irene; Delgado Benito, Juan F.; Martínez Díaz, Raquel; Mazas Pérez-Oleaga, Cristina; Martínez López, Nohora Milena; Dominguez Azpíroz, Irma y Martín-Rodríguez, Francisco mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, raquel.martinez@uneatlantico.es, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, irma.dominguez@unini.edu.mx, SIN ESPECIFICAR (2024) A Comparison of the Clinical Characteristics of Short-, Mid-, and Long-Term Mortality in Patients Attended by the Emergency Medical Services: An Observational Study. Diagnostics, 14 (12). p. 1292. ISSN 2075-4418

Artículo Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés SIN ESPECIFICAR metadata Khawaja, Seher Ansar; Farooq, Muhammad Shoaib; Ishaq, Kashif; Alsubaie, Najah; Karamti, Hanen; Caro Montero, Elizabeth; Silva Alvarado, Eduardo René y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, SIN ESPECIFICAR (2024) Correction: Prediction of leukemia peptides using convolutional neural network and protein compositions. BMC Cancer, 24 (1). ISSN 1471-2407

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Generative intelligence relies heavily on the integration of vision and language. Much of the research has focused on image captioning, which involves describing images with meaningful sentences. Typically, when generating sentences that describe the visual content, a language model and a vision encoder are commonly employed. Because of the incorporation of object areas, properties, multi-modal connections, attentive techniques, and early fusion approaches like bidirectional encoder representations from transformers (BERT), these components have experienced substantial advancements over the years. This research offers a reference to the body of literature, identifies emerging trends in an area that blends computer vision as well as natural language processing in order to maximize their complementary effects, and identifies the most significant technological improvements in architectures employed for image captioning. It also discusses various problem variants and open challenges. This comparison allows for an objective assessment of different techniques, architectures, and training strategies by identifying the most significant technical innovations, and offers valuable insights into the current landscape of image captioning research. metadata Jamil, Azhar; Rehman, Saif Ur; Mahmood, Khalid; Gracia Villar, Mónica; Prola, Thomas; Diez, Isabel De La Torre; Samad, Md Abdus y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, thomas.prola@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Deep Learning Approaches for Image Captioning: Opportunities, Challenges and Future Potential. IEEE Access. p. 1. ISSN 2169-3536

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés The classification of bird species is of significant importance in the field of ornithology, as it plays an important role in assessing and monitoring environmental dynamics, including habitat modifications, migratory behaviors, levels of pollution, and disease occurrences. Traditional methods of bird classification, such as visual identification, were time-intensive and required a high level of expertise. However, audio-based bird species classification is a promising approach that can be used to automate bird species identification. This study aims to establish an audio-based bird species classification system for 264 Eastern African bird species employing modified deep transfer learning. In particular, the pre-trained EfficientNet technique was utilized for the investigation. The study adapts the fine-tune model to learn the pertinent patterns from mel spectrogram images specific to this bird species classification task. The fine-tuned EfficientNet model combined with a type of Recurrent Neural Networks (RNNs) namely Gated Recurrent Unit (GRU) and Long short-term memory (LSTM). RNNs are employed to capture the temporal dependencies in audio signals, thereby enhancing bird species classification accuracy. The dataset utilized in this work contains nearly 17,000 bird sound recordings across a diverse range of species. The experiment was conducted with several combinations of EfficientNet and RNNs, and EfficientNet-B7 with GRU surpasses other experimental models with an accuracy of 84.03% and a macro-average precision score of 0.8342. metadata Shaikh, Asadullah; Baowaly, Mrinal Kanti; Sarkar, Bisnu Chandra; Walid, Md. Abul Ala; Ahamad, Md. Martuza; Singh, Bikash Chandra; Silva Alvarado, Eduardo René; Ashraf, Imran y Samad, Md. Abdus mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, eduardo.silva@funiber.org, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Deep transfer learning-based bird species classification using mel spectrogram images. PLOS ONE, 19 (8). e0305708. ISSN 1932-6203

Artículo Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide. metadata Alam, Md Nuho Ul; Hasnine, Ibrahim; Bahadur, Erfanul Hoque; Masum, Abdul Kadar Muhammad; Briones Urbano, Mercedes; Masías Vergara, Manuel; Uddin, Jia; Ashraf, Imran y Samad, Md. Abdus mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, mercedes.briones@uneatlantico.es, manuel.masias@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network. Journal of Big Data, 11 (1). ISSN 2196-1115

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff. metadata Mujahid, Muhammad; Rustam, Furqan; Shafique, Rahman; Caro Montero, Elizabeth; Silva Alvarado, Eduardo René; de la Torre Diez, Isabel y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Efficient deep learning-based approach for malaria detection using red blood cell smears. Scientific Reports, 14 (1). ISSN 2045-2322

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Humans can carry various diseases, some of which are poorly understood and lack comprehensive solutions. Such a disease can exists in human eye that can affect one or both eyes is diabetic retinopathy (DR) which can impair function, vision, and eventually result in permanent blindness. It is one of those complex complexities. Therefore, early detection of DR can significantly reduce the risk of vision impairment by appropriate treatment and necessary precautions. The primary aim of this study is to leverage cutting-edge models trained on diverse image datasets and propose a CNN model that demonstrates comparable performance. Specifically, we employ transfer learning models such as DenseNet121, Xception, Resnet50, VGG16, VGG19, and InceptionV3, and machine learning models such as SVM, and neural network models like (RNN) for binary and multi-class classification. It has been shown that the proposed approach of multi-label classification with softmax functions and categorical cross-entropy works more effectively, yielding perfect accuracy, precision, and recall values. In particular, Xception achieved an impressive 82% accuracy among all the transfer learning models, setting a new benchmark for the dataset used. However, our proposed CNN model shows superior performance, achieving an accuracy of 95.27% on this dataset, surpassing the state-of-the-art Xception model. Moreover, for single-label (binary classifications), our proposed model achieved perfect accuracy as well. Through exploration of these advances, our objective is to provide a comprehensive overview of the leading methods for the early detection of DR. The aim is to discuss the challenges associated with these methods and highlight potential enhancements. In essence, this paper provides a high-level perspective on the integration of deep learning techniques and machine learning models, coupled with explainable artificial intelligence (XAI) and gradient-weighted class activation mapping (Grad-CAM). We prese... metadata Ahnaf Alavee, Kazi; Hasan, Mehedi; Hasnayen Zillanee, Abu; Mostakim, Moin; Uddin, Jia; Silva Alvarado, Eduardo René; de la Torre Diez, Isabel; Ashraf, Imran y Abdus Samad, Md mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, eduardo.silva@funiber.org, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Enhancing Early Detection of Diabetic Retinopathy Through the Integration of Deep Learning Models and Explainable Artificial Intelligence. IEEE Access, 12. pp. 73950-73969. ISSN 2169-3536

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés In contemporary society, depression has emerged as a prominent mental disorder that exhibits exponential growth and exerts a substantial influence on premature mortality. Although numerous research applied machine learning methods to forecast signs of depression. Nevertheless, only a limited number of research have taken into account the severity level as a multiclass variable. Besides, maintaining the equality of data distribution among all the classes rarely happens in practical communities. So, the inevitable class imbalance for multiple variables is considered a substantial challenge in this domain. Furthermore, this research emphasizes the significance of addressing class imbalance issues in the context of multiple classes. We introduced a new approach Feature group partitioning (FGP) in the data preprocessing phase which effectively reduces the dimensionality of features to a minimum. This study utilized synthetic oversampling techniques, specifically Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN), for class balancing. The dataset used in this research was collected from university students by administering the Burn Depression Checklist (BDC). For methodological modifications, we implemented heterogeneous ensemble learning stacking, homogeneous ensemble bagging, and five distinct supervised machine learning algorithms. The issue of overfitting was mitigated by evaluating the accuracy of the training, validation, and testing datasets. To justify the effectiveness of the prediction models, balanced accuracy, sensitivity, specificity, precision, and f1-score indices are used. Overall, comprehensive analysis demonstrates the discrimination between the Conventional Depression Screening (CDS) and FGP approach. In summary, the results show that the stacking classifier for FGP with SMOTE approach yields the highest balanced accuracy, with a rate of 92.81%. The empirical evidence has demonstrated that the FGP approach, when combined with the SMOTE, able to produce better performance in predicting the severity of depression. Most importantly the optimization of the training time of the FGP approach for all of the classifiers is a significant achievement of this research. metadata Shaha, Tumpa Rani; Begum, Momotaz; Uddin, Jia; Yélamos Torres, Vanessa; Alemany Iturriaga, Josep; Ashraf, Imran y Samad, Md. Abdus mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, vanessa.yelamos@funiber.org, josep.alemany@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Feature group partitioning: an approach for depression severity prediction with class balancing using machine learning algorithms. BMC Medical Research Methodology, 24 (1). ISSN 1471-2288

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Wafer mappings (WM) help diagnose low-yield issues in semiconductor production by offering vital information about process anomalies. As integrated circuits continue to grow in complexity, doing efficient yield analyses is becoming more essential but also more difficult. Semiconductor manufacturers require constant attention to reliability and efficiency. Using the capabilities of convolutional neural network (CNN) models improved by hierarchical attention module (HAM), wafer hotspot detection is achieved throughout the fabrication process. In an effort to achieve accurate hotspot detection, this study examines a variety of model combinations, including CNN, CNN+long short-term memory (LSTM) LSTM, CNN+Autoencoder, CNN+artificial neural network (ANN), LSTM+HAM, Autoencoder+HAM, ANN+HAM, and CNN+HAM. Data augmentation strategies are utilized to enhance the model’s resilience by optimizing its performance on a variety of datasets. Experimental results indicate a superior performance of 94.58% accuracy using the CNN+HAM model. K-fold cross-validation results using 3, 5, 7, and 10 folds indicate mean accuracy of 94.66%, 94.67%, 94.66%, and 94.66%, for the proposed approach, respectively. The proposed model performs better than recent existing works on wafer hotspot detection. Performance comparison with existing models further validates its robustness and performance. metadata Shahroz, Mobeen; Ali, Mudasir; Tahir, Alishba; Fabian Gongora, Henry; Uc Ríos, Carlos Eduardo; Abdus Samad, Md y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, henry.gongora@uneatlantico.es, carlos.uc@unini.edu.mx, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Hierarchical Attention Module-Based Hotspot Detection in Wafer Fabrication Using Convolutional Neural Network Model. IEEE Access, 12. pp. 92840-92855. ISSN 2169-3536

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés New approaches to software testing are required due to the rising complexity of today’s software applications and the rapid growth of software engineering practices. Among these methods, one that has shown promise is the introduction of Natural Language Processing (NLP) tools to software testing practices. NLP has witnessed a rise in popularity within all IT fields, especially in software engineering, where its use has improved the way we extract information from textual data. The goal of this systematic literature review (SLR) is to provide an in-depth analysis of the present body of the literature on the expanding subject of NLP-based software testing. Through a repeatable process, that takes into account the quality of the research, we examined 24 papers extracted from Web of Science and Scopus databases to extract insights about the usage of NLP techniques in the field of software testing. Requirements analysis and test case generation popped up as the most hot topics in the field. We also explored NLP techniques, software testing types, machine/deep learning algorithms, and NLP tools and frameworks used in the studied body of literature. This study also stressed some recurrent open challenges that need further work in future research such as the generalization of the NLP algorithm across domains and languages and the ambiguity in the natural language requirements. Software testing professionals and researchers can get important insights from the findings of this SLR, which will help them comprehend the advantages and challenges of using NLP in software testing. metadata Boukhlif, Mohamed; Hanine, Mohamed; Kharmoum, Nassim; Ruigómez Noriega, Atenea; García Obeso, David y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, atenea.ruigomez@uneatlantico.es, david.garcia@uneatlantico.es, SIN ESPECIFICAR (2024) Natural Language Processing-Based Software Testing: A Systematic Literature Review. IEEE Access, 12. pp. 79383-79400. ISSN 2169-3536

Artículo Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Cerrado Inglés Leukemia is a type of blood cell cancer that is in the bone marrow’s blood-forming cells. Two types of Leukemia are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lymphocytic and myeloid leukemias. This work evaluates a unique deep convolutional neural network (CNN) classifier that improves identification precision by carefully examining concatenated peptide patterns. The study uses leukemia protein expression for experiments supporting two different techniques including independence and applied cross-validation. In addition to CNN, multilayer perceptron (MLP), gated recurrent unit (GRU), and recurrent neural network (RNN) are applied. The experimental results show that the CNN model surpasses competitors with its outstanding predictability in independent and cross-validation testing applied on different features extracted from protein expressions such as amino acid composition (AAC) with a group of AAC (GAAC), tripeptide composition (TPC) with a group of TPC (GTPC), and dipeptide composition (DPC) for calculating its accuracies with their receiver operating characteristic (ROC) curve. In independence testing, a feature expression of AAC and a group of GAAC are applied using MLP and CNN modules, and ROC curves are achieved with overall 100% accuracy for the detection of protein patterns. In cross-validation testing, a feature expression on a group of AAC and GAAC patterns achieved 98.33% accuracy which is the highest for the CNN module. Furthermore, ROC curves show a 0.965% extraordinary result for the GRU module. The findings show that the CNN model is excellent at figuring out leukemia illnesses from protein expressions with higher accuracy. metadata Khawaja, Seher Ansar; Farooq, Muhammad Shoaib; Ishaq, Kashif; Alsubaie, Najah; Karamti, Hanen; Caro Montero, Elizabeth; Silva Alvarado, Eduardo René y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, SIN ESPECIFICAR (2024) Prediction of leukemia peptides using convolutional neural network and protein compositions. BMC Cancer, 24 (1). ISSN 1471-2407

Artículo Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Telephysiotherapy has emerged as a vital solution for delivering remote healthcare, particularly in response to global challenges such as the COVID-19 pandemic. This study seeks to enhance telephysiotherapy by developing a system capable of accurately classifying physiotherapeutic exercises using PoseNet, a state-of-the-art pose estimation model. A dataset was collected from 49 participants (35 males, 14 females) performing seven distinct exercises, with twelve anatomical landmarks then extracted using the Google MediaPipe library. Each landmark was represented by four features, which were used for classification. The core challenge addressed in this research involves ensuring accurate and real-time exercise classification across diverse body morphologies and exercise types. Several tree-based classifiers, including Random Forest, Extra Tree Classifier, XGBoost, LightGBM, and Hist Gradient Boosting, were employed. Furthermore, two novel ensemble models called RandomLightHist Fusion and StackedXLightRF are proposed to enhance classification accuracy. The RandomLightHist Fusion model achieved superior accuracy of 99.6%, demonstrating the system’s robustness and effectiveness. This innovation offers a practical solution for providing real-time feedback in telephysiotherapy, with potential to improve patient outcomes through accurate monitoring and assessment of exercise performance. metadata Hussain, Shahzad; Siddiqui, Hafeez Ur Rehman; Saleem, Adil Ali; Raza, Muhammad Amjad; Alemany Iturriaga, Josep; Velarde-Sotres, Álvaro; Díez, Isabel De la Torre y Dudley, Sandra mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josep.alemany@uneatlantico.es, alvaro.velarde@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Smart Physiotherapy: Advancing Arm-Based Exercise Classification with PoseNet and Ensemble Models. Sensors, 24 (19). p. 6325. ISSN 1424-8220

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Software cost and effort estimation is one of the most significant tasks in the area of software engineering. Research conducted in this field has been evolving with new techniques that necessitate periodic comparative analyses. Software project success largely depends on accurate software cost estimation as it gives an idea of the challenges and risks involved in the development. The great diversity of ML and Non-ML techniques has generated a comparison and progressed into the integration of these techniques. Based on varying advantages it has become imperative to work out preferred estimation techniques to improve the project development process. This study aims to present a systematic literature review (SLR) to investigate the trends of the articles published in the recent one and a half decades and to propose a way forward. This systematic literature review has proposed a three-stage approach to plan (Tollgate approach), conduct (Likert type scale), and report the results from five renowned digital libraries. For the selected 52 articles, artificial neural network model (ANN) and constructive cost model (COCOMO) based approaches have been the favored techniques. The mean magnitude of relative error (MMRE) has been the preferred accuracy metric, software engineering, and project management are the most relevant fields, and the promise repository has been identified as the widely accessed database. This review is likely to be of value for the development, cost, and effort estimations. metadata Rashid, Chaudhary Hamza; Shafi, Imran; Ahmad, Jamil; Bautista Thompson, Ernesto; Masías Vergara, Manuel; Diez, Isabel De La Torre y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, ernesto.bautista@unini.edu.mx, manuel.masias@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2023) Software Cost and Effort Estimation: Current Approaches and Future Trends. IEEE Access. p. 1. ISSN 2169-3536

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Data mining is an analytical approach that contributes to achieving a solution to many problems by extracting previously unknown, fascinating, nontrivial, and potentially valuable information from massive datasets. Clustering in data mining is used for splitting or segmenting data items/points into meaningful groups and clusters by grouping the items that are near to each other based on certain statistics. This paper covers various elements of clustering, such as algorithmic methodologies, applications, clustering assessment measurement, and researcher-proposed enhancements with their impact on data mining thorough grasp of clustering algorithms, its applications, and the advances achieved in the existing literature. This study includes a literature search for papers published between 1995 and 2023, including conference and journal publications. The study begins by outlining fundamental clustering techniques along with algorithm improvements and emphasizing their advantages and limitations in comparison to other clustering algorithms. It investigates the evolution measures for clustering algorithms with an emphasis on metrics used to gauge clustering quality, such as the F-measure and the Rand Index. This study includes a variety of clustering-related topics, such as algorithmic approaches, practical applications, metrics for clustering evaluation, and researcher-proposed improvements. It addresses numerous methodologies offered to increase the convergence speed, resilience, and accuracy of clustering, such as initialization procedures, distance measures, and optimization strategies. The work concludes by emphasizing clustering as an active research area driven by the need to identify significant patterns and structures in data, enhance knowledge acquisition, and improve decision making across different domains. This study aims to contribute to the broader knowledge base of data mining practitioners and researchers, facilitating informed decision making and fostering advancements in the field through a thorough analysis of algorithmic enhancements, clustering assessment metrics, and optimization strategies. metadata Chaudhry, Mahnoor; Shafi, Imran; Mahnoor, Mahnoor; Ramírez-Vargas, Debora L.; Bautista Thompson, Ernesto y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, debora.ramirez@unini.edu.mx, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR (2023) A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. Symmetry, 15 (9). p. 1679. ISSN 2073-8994

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Artificial intelligence (AI)-based models have emerged as powerful tools in financial markets, capable of reducing investment risks and aiding in selecting highly profitable stocks by achieving precise predictions. This holds immense value for investors, as it empowers them to make data-driven decisions. Identifying current and future trends in multi-class forecasting techniques employed within financial markets, particularly profitability analysis as an evaluation metric is important. The review focuses on examining stud-ies conducted between 2018 and 2023, sourced from three prominent academic databases. A meticulous three-stage approach was employed, encompassing the systematic planning, conduct, and analysis of the se-lected studies. Specifically, the analysis emphasizes technical assessment, profitability analysis, hybrid mod-eling, and the type of results generated by models. Articles were shortlisted based on inclusion and exclusion criteria, while a rigorous quality assessment through ten quality criteria questions, utilizing a Likert-type scale was employed to ensure methodological robustness. We observed that ensemble and hybrid models with long short-term memory (LSTM) and support vector machines (SVM) are being more adopted for financial trends and price prediction. Moreover, hybrid models employing AI algorithms for feature engineering have great potential at par with ensemble techniques. Most studies only employ performance metrics and lack utilization of profitability metrics or investment or trading strategy (simulated or real-time). Similarly, research on multi-class or output is severely lacking in financial forecasting and can be a good avenue for future research. metadata Khattak, Bilal Hassan Ahmed; Shafi, Imran; Khan, Abdul Saboor; Soriano Flores, Emmanuel; García Lara, Roberto; Samad, Md. Abdus y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR (2023) A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis. IEEE Access, 11. pp. 125359-125380. ISSN 2169-3536

Artículo Materias > Educación física y el deporte
Materias > Ingeniería
Universidad de La Romana > Investigación > Producción Científica Abierto Inglés Physiotherapy plays a crucial role in the rehabilitation of damaged or defective organs due to injuries or illnesses, often requiring long-term supervision by a physiotherapist in clinical settings or at home. AI-based support systems have been developed to enhance the precision and effectiveness of physiotherapy, particularly during the COVID-19 pandemic. These systems, which include game-based or tele-rehabilitation monitoring using camera-based optical systems like Vicon and Microsoft Kinect, face challenges such as privacy concerns, occlusion, and sensitivity to environmental light. Non-optical sensor alternatives, such as Inertial Movement Units (IMUs), Wi-Fi, ultrasound sensors, and ultrawide band (UWB) radar, have emerged to address these issues. Although IMUs are portable and cost-effective, they suffer from disadvantages like drift over time, limited range, and susceptibility to magnetic interference. In this study, a single UWB radar was utilized to recognize five therapeutic exercises related to the upper limb, performed by 34 male volunteers in a real environment. A novel feature fusion approach was developed to extract distinguishing features for these exercises. Various machine learning methods were applied, with the EnsembleRRGraBoost ensemble method achieving the highest recognition accuracy of 99.45%. The performance of the EnsembleRRGraBoost model was further validated using five-fold cross-validation, maintaining its high accuracy. metadata Hussain, Shahzad; Siddiqui, Hafeez Ur Rehman; Saleem, Adil Ali; Raza, Muhammad Amjad; Alemany Iturriaga, Josep; Velarde-Sotres, Álvaro y Díez, Isabel De la Torre mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josep.alemany@uneatlantico.es, alvaro.velarde@uneatlantico.es, SIN ESPECIFICAR (2024) Therapeutic Exercise Recognition Using a Single UWB Radar with AI-Driven Feature Fusion and ML Techniques in a Real Environment. Sensors, 24 (17). p. 5533. ISSN 1424-8220

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%. metadata Siddiqui, Hafeez Ur Rehman; Akmal, Ambreen; Iqbal, Muhammad; Saleem, Adil Ali; Raza, Muhammad Amjad; Zafar, Kainat; Zaib, Aqsa; Dudley, Sandra; Arambarri, Jon; Kuc Castilla, Ángel Gabriel y Rustam, Furqan mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, jon.arambarri@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2024) Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence. Sensors, 24 (12). p. 3754. ISSN 1424-8220

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Video content on the web platform has increased explosively during the past decade, thanks to the open access to Facebook, YouTube, etc. YouTube is the second-largest social media platform nowadays containing more than 37 million YouTube channels. YouTube revealed at a recent press event that 30,000 new content videos per hour and 720,000 per day are posted. There is a need for an advanced deep learning-based approach to categorize the huge database of YouTube videos. This study aims to develop an artificial intelligence-based approach to categorize YouTube videos. This study analyzes the textual information related to videos like titles, descriptions, user tags, etc. using YouTube exploratory data analysis (YEDA) and shows that such information can be potentially used to categorize videos. A deep convolutional neural network (DCNN) is designed to categorize YouTube videos with efficiency and high accuracy. In addition, recurrent neural network (RNN), and gated recurrent unit (GRU) are also employed for performance comparison. Moreover, logistic regression, support vector machines, decision trees, and random forest models are also used. A large dataset with 9 classes is used for experiments. Experimental findings indicate that the proposed DCNN achieves the highest receiver operating characteristics (ROC) area under the curve (AUC) score of 99% in the context of YouTube video categorization and 96% accuracy which is better than existing approaches. The proposed approach can be used to help YouTube users suggest relevant videos and sort them by video category. metadata Raza, Ali; Younas, Faizan; Siddiqui, Hafeez Ur Rehman; Rustam, Furqan; Gracia Villar, Mónica; Silva Alvarado, Eduardo René y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, eduardo.silva@funiber.org, SIN ESPECIFICAR (2024) An improved deep convolutional neural network-based YouTube video classification using textual features. Heliyon, 10 (16). e35812. ISSN 24058440

Este listado fue generado el Thu Oct 17 23:41:12 2024 UTC.

<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/14584/1.hassmallThumbnailVersion/s41598-024-73664-6.pdf" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro

<a href="/14482/1/sensors-24-06325.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/14482/1.hassmallThumbnailVersion/sensors-24-06325.pdf" border="0"/></a>

en

open

Smart Physiotherapy: Advancing Arm-Based Exercise Classification with PoseNet and Ensemble Models

Telephysiotherapy has emerged as a vital solution for delivering remote healthcare, particularly in response to global challenges such as the COVID-19 pandemic. This study seeks to enhance telephysiotherapy by developing a system capable of accurately classifying physiotherapeutic exercises using PoseNet, a state-of-the-art pose estimation model. A dataset was collected from 49 participants (35 males, 14 females) performing seven distinct exercises, with twelve anatomical landmarks then extracted using the Google MediaPipe library. Each landmark was represented by four features, which were used for classification. The core challenge addressed in this research involves ensuring accurate and real-time exercise classification across diverse body morphologies and exercise types. Several tree-based classifiers, including Random Forest, Extra Tree Classifier, XGBoost, LightGBM, and Hist Gradient Boosting, were employed. Furthermore, two novel ensemble models called RandomLightHist Fusion and StackedXLightRF are proposed to enhance classification accuracy. The RandomLightHist Fusion model achieved superior accuracy of 99.6%, demonstrating the system’s robustness and effectiveness. This innovation offers a practical solution for providing real-time feedback in telephysiotherapy, with potential to improve patient outcomes through accurate monitoring and assessment of exercise performance.

Producción Científica

Shahzad Hussain mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Isabel De la Torre Díez mail , Sandra Dudley mail ,

Hussain

<a href="/14207/1/sensors-24-05533.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/14207/1.hassmallThumbnailVersion/sensors-24-05533.pdf" border="0"/></a>

en

open

Therapeutic Exercise Recognition Using a Single UWB Radar with AI-Driven Feature Fusion and ML Techniques in a Real Environment

Physiotherapy plays a crucial role in the rehabilitation of damaged or defective organs due to injuries or illnesses, often requiring long-term supervision by a physiotherapist in clinical settings or at home. AI-based support systems have been developed to enhance the precision and effectiveness of physiotherapy, particularly during the COVID-19 pandemic. These systems, which include game-based or tele-rehabilitation monitoring using camera-based optical systems like Vicon and Microsoft Kinect, face challenges such as privacy concerns, occlusion, and sensitivity to environmental light. Non-optical sensor alternatives, such as Inertial Movement Units (IMUs), Wi-Fi, ultrasound sensors, and ultrawide band (UWB) radar, have emerged to address these issues. Although IMUs are portable and cost-effective, they suffer from disadvantages like drift over time, limited range, and susceptibility to magnetic interference. In this study, a single UWB radar was utilized to recognize five therapeutic exercises related to the upper limb, performed by 34 male volunteers in a real environment. A novel feature fusion approach was developed to extract distinguishing features for these exercises. Various machine learning methods were applied, with the EnsembleRRGraBoost ensemble method achieving the highest recognition accuracy of 99.45%. The performance of the EnsembleRRGraBoost model was further validated using five-fold cross-validation, maintaining its high accuracy.

Scientific Production

Shahzad Hussain mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Isabel De la Torre Díez mail ,

Hussain

<a href="/14280/1/journal.pone.0305708.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/14280/1.hassmallThumbnailVersion/journal.pone.0305708.pdf" border="0"/></a>

en

open

Deep transfer learning-based bird species classification using mel spectrogram images

The classification of bird species is of significant importance in the field of ornithology, as it plays an important role in assessing and monitoring environmental dynamics, including habitat modifications, migratory behaviors, levels of pollution, and disease occurrences. Traditional methods of bird classification, such as visual identification, were time-intensive and required a high level of expertise. However, audio-based bird species classification is a promising approach that can be used to automate bird species identification. This study aims to establish an audio-based bird species classification system for 264 Eastern African bird species employing modified deep transfer learning. In particular, the pre-trained EfficientNet technique was utilized for the investigation. The study adapts the fine-tune model to learn the pertinent patterns from mel spectrogram images specific to this bird species classification task. The fine-tuned EfficientNet model combined with a type of Recurrent Neural Networks (RNNs) namely Gated Recurrent Unit (GRU) and Long short-term memory (LSTM). RNNs are employed to capture the temporal dependencies in audio signals, thereby enhancing bird species classification accuracy. The dataset utilized in this work contains nearly 17,000 bird sound recordings across a diverse range of species. The experiment was conducted with several combinations of EfficientNet and RNNs, and EfficientNet-B7 with GRU surpasses other experimental models with an accuracy of 84.03% and a macro-average precision score of 0.8342.

Producción Científica

Asadullah Shaikh mail , Mrinal Kanti Baowaly mail , Bisnu Chandra Sarkar mail , Md. Abul Ala Walid mail , Md. Martuza Ahamad mail , Bikash Chandra Singh mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Imran Ashraf mail , Md. Abdus Samad mail ,

Shaikh

<a class="ep_document_link" href="/14282/1/s40537-024-00959-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/14282/1.hassmallThumbnailVersion/s40537-024-00959-w.pdf" border="0"/></a>

en

open

DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network

Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.

Producción Científica

Md Nuho Ul Alam mail , Ibrahim Hasnine mail , Erfanul Hoque Bahadur mail , Abdul Kadar Muhammad Masum mail , Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Jia Uddin mail , Imran Ashraf mail , Md. Abdus Samad mail ,

Alam